IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29623-8.html
   My bibliography  Save this article

New seasonal pattern of pollution emerges from changing North American wildfires

Author

Listed:
  • Rebecca R. Buchholz

    (National Center for Atmospheric Research)

  • Mijeong Park

    (National Center for Atmospheric Research)

  • Helen M. Worden

    (National Center for Atmospheric Research)

  • Wenfu Tang

    (National Center for Atmospheric Research)

  • David P. Edwards

    (National Center for Atmospheric Research)

  • Benjamin Gaubert

    (National Center for Atmospheric Research)

  • Merritt N. Deeter

    (National Center for Atmospheric Research)

  • Thomas Sullivan

    (University of Colorado)

  • Muye Ru

    (Columbia University)

  • Mian Chin

    (NASA Goddard Space Flight Center)

  • Robert C. Levy

    (NASA Goddard Space Flight Center)

  • Bo Zheng

    (Tsinghua University)

  • Sheryl Magzamen

    (Colorado State University)

Abstract

Rising emissions from wildfires over recent decades in the Pacific Northwest are known to counteract the reductions in human-produced aerosol pollution over North America. Since amplified Pacific Northwest wildfires are predicted under accelerating climate change, it is essential to understand both local and transported contributions to air pollution in North America. Here, we find corresponding increases for carbon monoxide emitted from the Pacific Northwest wildfires and observe significant impacts on both local and down-wind air pollution. Between 2002 and 2018, the Pacific Northwest atmospheric carbon monoxide abundance increased in August, while other months showed decreasing carbon monoxide, so modifying the seasonal pattern. These seasonal pattern changes extend over large regions of North America, to the Central USA and Northeast North America regions, indicating that transported wildfire pollution could potentially impact the health of millions of people.

Suggested Citation

  • Rebecca R. Buchholz & Mijeong Park & Helen M. Worden & Wenfu Tang & David P. Edwards & Benjamin Gaubert & Merritt N. Deeter & Thomas Sullivan & Muye Ru & Mian Chin & Robert C. Levy & Bo Zheng & Sheryl, 2022. "New seasonal pattern of pollution emerges from changing North American wildfires," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29623-8
    DOI: 10.1038/s41467-022-29623-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29623-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29623-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kim, P. S, 2015. "Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model," Working Paper 324431, Harvard University OpenScholar.
    2. Irene C. Dedoussi & Sebastian D. Eastham & Erwan Monier & Steven R. H. Barrett, 2020. "Premature mortality related to United States cross-state air pollution," Nature, Nature, vol. 578(7794), pages 261-265, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacqueline Adelowo & Mathias Mier & Christoph Weissbart, 2021. "Taxation of Carbon Emissions and Air Pollution in Intertemporal Optimization Frameworks with Social and Private Discount Rates," ifo Working Paper Series 360, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    2. Ruoyu Lan & Sebastian D. Eastham & Tianjia Liu & Leslie K. Norford & Steven R. H. Barrett, 2022. "Air quality impacts of crop residue burning in India and mitigation alternatives," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Di Wu & Haotian Zheng & Qing Li & Shuxiao Wang & Bin Zhao & Ling Jin & Rui Lyu & Shengyue Li & Yuzhe Liu & Xiu Chen & Fenfen Zhang & Qingru Wu & Tonghao Liu & Jingkun Jiang & Lin Wang & Xiangdong Li &, 2023. "Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Mathias Mier & Jacqueline Adelowo & Christoph Weissbart, 2022. "Complementary Taxation of Carbon Emissions and Local Air Pollution," ifo Working Paper Series 375, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    5. Isadora Luiza Climaco Cunha & Fábio Rosa & Luiz Kulay, 2021. "Green Coalescent Synthesis Based on the Design for Environment (DfE) Principles: Brazilian Experience," Sustainability, MDPI, vol. 13(22), pages 1-22, November.
    6. Lining Zhu & Yu Zhang & Zheng Wu & Chengcheng Zhang, 2021. "Spatio-Temporal Characteristics of SO 2 across Weifang from 2008 to 2020," IJERPH, MDPI, vol. 18(22), pages 1-17, November.
    7. AbdulRafiu, Abbas & Sovacool, Benjamin K. & Daniels, Chux, 2022. "The dynamics of global public research funding on climate change, energy, transport, and industrial decarbonisation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Zeyu Tang & Jinzhu Jia, 2022. "The Association between the Burden of PM 2.5 -Related Neonatal Preterm Birth and Socio-Demographic Index from 1990 to 2019: A Global Burden Study," IJERPH, MDPI, vol. 19(16), pages 1-20, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29623-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.