IDEAS home Printed from https://ideas.repec.org/a/lpe/efijnl/201515.html
   My bibliography  Save this article

Managing Productivity in the Infrastructure Sector: A Case Study from Indonesia

Author

Listed:
  • Eric R.W. Knight
  • James D. Meade

    (University of Sydney Business School)

Abstract

This paper considers the nature of assessing productivity and effectiveness in infrastructure investment in the context of governments’ increasing investment in new infrastructure. Taking the case of energy infrastructure investment within Indonesia, this paper makes three contributions: (i) develops a model for assessing infrastructure productivity based on landscape, regime and niche-level changes, (ii) suggests the interconnection between these levels based on sequencing multi-level changes over time, and (iii) shows the role of supply and demand side initiatives in enabling new infrastructure investment is evaluated.

Suggested Citation

  • Eric R.W. Knight & James D. Meade, 2015. "Managing Productivity in the Infrastructure Sector: A Case Study from Indonesia," Economics and Finance in Indonesia, Faculty of Economics and Business, University of Indonesia, vol. 61, pages 214-222, December.
  • Handle: RePEc:lpe:efijnl:201515
    as

    Download full text from publisher

    File URL: http://www.lpem.org/repec/lpe/efijnl/201515.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Morag I. Torrance, 2007. "The Power of Governance in Financial Relationships: Governing Tensions in Exotic Infrastructure Territory," Growth and Change, Wiley Blackwell, vol. 38(4), pages 671-695, December.
    2. Morag Torrance, 2009. "Reconceptualizing urban governance through a new paradigm for urban infrastructure networks," Journal of Economic Geography, Oxford University Press, vol. 9(6), pages 805-822, November.
    3. Geels, Frank W., 2002. "Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study," Research Policy, Elsevier, vol. 31(8-9), pages 1257-1274, December.
    4. Gordon L. Clark & Adam D. Dixon & Ashby H. B. Monk, 2013. "Sovereign Wealth Funds: Legitimacy, Governance, and Global Power," Economics Books, Princeton University Press, edition 1, volume 1, number 10003.
    5. Frank W. Geels, 2005. "Technological Transitions and System Innovations," Books, Edward Elgar Publishing, number 3576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Okereke, Chukwumerije & Coke, Alexia & Geebreyesus, Mulu & Ginbo, Tsegaye & Wakeford, Jeremy J. & Mulugetta, Yacob, 2019. "Governing green industrialisation in Africa: Assessing key parameters for a sustainable socio-technical transition in the context of Ethiopia," World Development, Elsevier, vol. 115(C), pages 279-290.
    2. Colvin, John & Blackmore, Chris & Chimbuya, Sam & Collins, Kevin & Dent, Mark & Goss, John & Ison, Ray & Roggero, Pier Paolo & Seddaiu, Giovanna, 2014. "In search of systemic innovation for sustainable development: A design praxis emerging from a decade of social learning inquiry," Research Policy, Elsevier, vol. 43(4), pages 760-771.
    3. David Gibbs & Kirstie O'Neill, 2014. "Rethinking Sociotechnical Transitions and Green Entrepreneurship: The Potential for Transformative Change in the Green Building Sector," Environment and Planning A, , vol. 46(5), pages 1088-1107, May.
    4. Geels, Frank W., 2006. "The hygienic transition from cesspools to sewer systems (1840-1930): The dynamics of regime transformation," Research Policy, Elsevier, vol. 35(7), pages 1069-1082, September.
    5. Héloïse Berkowitz, 2020. "Participatory Governance for the Development of the Blue Bioeconomy in the Mediterranean Region," Working Papers hal-02555685, HAL.
    6. Foxon, Timothy J. & Pearson, Peter J.G. & Arapostathis, Stathis & Carlsson-Hyslop, Anna & Thornton, Judith, 2013. "Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future," Energy Policy, Elsevier, vol. 52(C), pages 146-158.
    7. Roberto Hernández-Chea & Akriti Jain & Nancy M. P. Bocken & Anjula Gurtoo, 2021. "The Business Model in Sustainability Transitions: A Conceptualization," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    8. Li, Francis G.N. & Trutnevyte, Evelina & Strachan, Neil, 2015. "A review of socio-technical energy transition (STET) models," Technological Forecasting and Social Change, Elsevier, vol. 100(C), pages 290-305.
    9. Frans Berkhout & Anna J. Wieczorek & Rob Raven, 2011. "Avoiding Environmental Convergence: A Possible Role for Sustainability Experiments in Latecomer Countries?," Institutions and Economies (formerly known as International Journal of Institutions and Economies), Faculty of Economics and Administration, University of Malaya, vol. 3(2), pages 367-385, July.
    10. Jano-Ito, Marco A. & Crawford-Brown, Douglas, 2016. "Socio-technical analysis of the electricity sector of Mexico: Its historical evolution and implications for a transition towards low-carbon development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 567-590.
    11. Walrave, Bob & Talmar, Madis & Podoynitsyna, Ksenia S. & Romme, A. Georges L. & Verbong, Geert P.J., 2018. "A multi-level perspective on innovation ecosystems for path-breaking innovation," Technological Forecasting and Social Change, Elsevier, vol. 136(C), pages 103-113.
    12. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2015. "Towards a regime-based typology of market evolution," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 276-289.
    13. Kim Davis & Thomas Mazzuchi & Shahram Sarkani, 2013. "Architecting technology transitions: A sustainability‐oriented sociotechnical approach," Systems Engineering, John Wiley & Sons, vol. 16(2), pages 193-212, June.
    14. María Elena López Reyes & Willem A. Zwagers & Ingrid J. Mulder, 2020. "Considering the Human-Dimension to Make Sustainable Transitions Actionable," Sustainability, MDPI, vol. 12(21), pages 1-25, October.
    15. Nicholas Howarth, 2011. "Clean Energy Technology and the Role of Non-Carbon Price-Based Policy: An Evolutionary Economics Perspective," European Planning Studies, Taylor & Francis Journals, vol. 20(5), pages 871-891, October.
    16. Lepoutre, Jan & Oguntoye, Augustina, 2018. "The (non-)emergence of mobile money systems in Sub-Saharan Africa: A comparative multilevel perspective of Kenya and Nigeria," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 262-275.
    17. Van Lancker, Jonas & Mondelaers, Koen & Wauters, Erwin & Van Huylenbroeck, Guido, 2016. "The Organizational Innovation System: A systemic framework for radical innovation at the organizational level," Technovation, Elsevier, vol. 52, pages 40-50.
    18. Barton, John & Davies, Lloyd & Dooley, Ben & Foxon, Timothy J. & Galloway, Stuart & Hammond, Geoffrey P. & O’Grady, Áine & Robertson, Elizabeth & Thomson, Murray, 2018. "Transition pathways for a UK low-carbon electricity system: Comparing scenarios and technology implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2779-2790.
    19. Liqiao Wang & Peter Wells, 2021. "Regime Confluence in Automobile Industry Transformation: Boundary Dissolution and Network Reintegration via CASE Vehicles," Energies, MDPI, vol. 14(4), pages 1-18, February.
    20. James Evans & Andrew Karvonen, 2014. "‘Give Me a Laboratory and I Will Lower Your Carbon Footprint!’ — Urban Laboratories and the Governance of Low-Carbon Futures," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 38(2), pages 413-430, March.

    More about this item

    Keywords

    Infrastructure; Investment; Productivity; Multi-Level Perspectives Framework; Innovation;
    All these keywords.

    JEL classification:

    • O25 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Industrial Policy
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lpe:efijnl:201515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Muhammad Halley Yudhistira (email available below). General contact details of provider: https://edirc.repec.org/data/feuinid.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.