IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i2d10.1007_s11116-018-9904-5.html
   My bibliography  Save this article

Impact of pricing and transit disruptions on bikeshare ridership and revenue

Author

Listed:
  • Shruthi Kaviti

    (George Mason University)

  • Mohan M. Venigalla

    (George Mason University)

  • Shanjiang Zhu

    (George Mason University)

  • Kimberly Lucas

    (District Department of Transportation)

  • Stefanie Brodie

    (District Department of Transportation)

Abstract

Bikeshare operators routinely explore options to improve ridership and revenue by studying interaction among pricing, service and operations. The objective of this research is to study the impact of introducing a new $2 fare for single-trip on revenue and ridership at Capital Bikeshare (CaBi) in the metro Washington DC region. The single-trip fare (STF) at CaBi is one of the three fare products aimed at casual users—the other two being 24-h pass and 3-day pass. STF was introduced inconjuction with SafeTrack, which is a major Metrorail track maintenance program intiated by the Washington Metropolitan Area Transit Authority. The impact analysis of STF includes studying the influence of SafeTrack on CaBi ridership. The analysis was based on revenue and ridership data before and after the implementation of STF and weather data for the region. The results showed that the first-time casual members increased by as much as 79% immediately after the introduction of STF, along with an overall increase in ridership. Jurisdiction-level analysis indicated a statistically significant increase in casual user ridership for identical 12-month periods before and after the introduction of STF. However, the analysis indicated that the impact of STF on revenue from casual users before and after STF at jurisdiction-level was inconclusive. As would be expected, the launch of STF, which is a casual fare product, did not impact ridership and revenue of monthly and annual registered members. Sensitivity analysis of ridership to rail transit disruptions due to SafeTrack indicated that there was a statistically significant increase in ridership by registered members and casual users at the CaBi stations affected by SafeTrack. The concurrency of STF launch with SafeTrack may have played a role in this increase. For, the new fare product created an opportunity for commuters to try CaBi as an alternative travel mode at an affordable price that is compatible with transit fare during transit service disruptions. However, the analysis did not present any evidence on the sustained nature of CaBi ridership increase attributable to SafeTrack. The methods used in this research are helpful for bikeshare operators to model changes in ridership and revenue from attributable to pricing structure.

Suggested Citation

  • Shruthi Kaviti & Mohan M. Venigalla & Shanjiang Zhu & Kimberly Lucas & Stefanie Brodie, 2020. "Impact of pricing and transit disruptions on bikeshare ridership and revenue," Transportation, Springer, vol. 47(2), pages 641-662, April.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:2:d:10.1007_s11116-018-9904-5
    DOI: 10.1007/s11116-018-9904-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-018-9904-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-018-9904-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goodman, Anna & Cheshire, James, 2014. "Inequalities in the London bicycle sharing system revisited: impacts of extending the scheme to poorer areas but then doubling prices," Journal of Transport Geography, Elsevier, vol. 41(C), pages 272-279.
    2. Kyle Gebhart & Robert Noland, 2014. "The impact of weather conditions on bikeshare trips in Washington, DC," Transportation, Springer, vol. 41(6), pages 1205-1225, November.
    3. Martin, Elliot W. & Shaheen, Susan A., 2014. "Evaluating public transit modal shift dynamics in response to bikesharing: a tale of two U.S. cities," Journal of Transport Geography, Elsevier, vol. 41(C), pages 315-324.
    4. Martin, Elliot PhD & Shaheen, Susan PhD, 2014. "Evaluating Public Transit Modal Shift Dynamics In Response to Bikesharing: A Tale of Two U.S. Cities," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6x29n876, Institute of Transportation Studies, UC Berkeley.
    5. Raja Jurdak, 2013. "The Impact of Cost and Network Topology on Urban Mobility: A Study of Public Bicycle Usage in 2 U.S. Cities," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-6, November.
    6. Wafic El-Assi & Mohamed Salah Mahmoud & Khandker Nurul Habib, 2017. "Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto," Transportation, Springer, vol. 44(3), pages 589-613, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schimohr, Katja & Scheiner, Joachim, 2021. "Spatial and temporal analysis of bike-sharing use in Cologne taking into account a public transit disruption," Journal of Transport Geography, Elsevier, vol. 92(C).
    2. Nigro, Marialisa & Castiglione, Marisdea & Maria Colasanti, Fabio & De Vincentis, Rosita & Valenti, Gaetano & Liberto, Carlo & Comi, Antonio, 2022. "Exploiting floating car data to derive the shifting potential to electric micromobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 78-93.
    3. Dong, Zhongpeng & Fan, Zhi-Ping & Wang, Ningning, 2023. "An analysis of pricing strategy for bike-sharing services: The role of the inconvenience cost," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pengfei Lin & Jiancheng Weng & Quan Liang & Dimitrios Alivanistos & Siyong Ma, 2020. "Impact of Weather Conditions and Built Environment on Public Bikesharing Trips in Beijing," Networks and Spatial Economics, Springer, vol. 20(1), pages 1-17, March.
    2. Zhang, Xiang & Li, Wence, 2023. "Effects of a bike sharing system and COVID-19 on low-carbon traffic modal shift and emission reduction," Transport Policy, Elsevier, vol. 132(C), pages 42-64.
    3. Xie, Xiao-Feng & Wang, Zunjing Jenipher, 2018. "Examining travel patterns and characteristics in a bikesharing network and implications for data-driven decision supports: Case study in the Washington DC area," Journal of Transport Geography, Elsevier, vol. 71(C), pages 84-102.
    4. Hu, Beibei & Zhong, Zhenfang & Zhang, Yanli & Sun, Yue & Jiang, Li & Dong, Xianlei & Sun, Huijun, 2022. "Understanding the influencing factors of bicycle-sharing demand based on residents’ trips," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    5. Radzimski, Adam & Dzięcielski, Michał, 2021. "Exploring the relationship between bike-sharing and public transport in Poznań, Poland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 145(C), pages 189-202.
    6. Hyungkyoo Kim, 2020. "Seasonal Impacts of Particulate Matter Levels on Bike Sharing in Seoul, South Korea," IJERPH, MDPI, vol. 17(11), pages 1-17, June.
    7. Ouassim Manout & Azise Oumar Diallo & Thibault Gloriot, 2023. "Implications of pricing and fleet size strategies on shared bikes and e-scooters: a case study from Lyon, France," Working Papers hal-04017908, HAL.
    8. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    9. Saberi, Meead & Ghamami, Mehrnaz & Gu, Yi & Shojaei, Mohammad Hossein (Sam) & Fishman, Elliot, 2018. "Understanding the impacts of a public transit disruption on bicycle sharing mobility patterns: A case of Tube strike in London," Journal of Transport Geography, Elsevier, vol. 66(C), pages 154-166.
    10. Qiu, Waishan & Chang, Hector, 2021. "The interplay between dockless bikeshare and bus for small-size cities in the US: A case study of Ithaca," Journal of Transport Geography, Elsevier, vol. 96(C).
    11. Todd, James & O'Brien, Oliver & Cheshire, James, 2021. "A global comparison of bicycle sharing systems," Journal of Transport Geography, Elsevier, vol. 94(C).
    12. Chen, Zhiwei & Guo, Yujie & Stuart, Amy L. & Zhang, Yu & Li, Xiaopeng, 2019. "Exploring the equity performance of bike-sharing systems with disaggregated data: A story of southern Tampa," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 529-545.
    13. Böcker, Lars & Anderson, Ellinor & Uteng, Tanu Priya & Throndsen, Torstein, 2020. "Bike sharing use in conjunction to public transport: Exploring spatiotemporal, age and gender dimensions in Oslo, Norway," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 389-401.
    14. Xiaofeng Li & Yao-Jan Wu & Alireza Khani, 2022. "Investigating a small-sized bike-sharing system’s impact on transit usage: a synthetic control analysis in Tucson, Arizona," Public Transport, Springer, vol. 14(2), pages 441-458, June.
    15. Bakó, Barna & Isztin, Péter & Berezvai, Zombor & Cseke, Petra Zsuzsanna, 2019. "Infrastruktúra-bővítés világversenyek idején. A Mol Bubi esete a FINA világbajnoksággal [Infrastructural investments for international sports events. Network expansion of the MOL Bubi bicycle-shari," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(1), pages 4-21.
    16. Wang, Ruoxuan & Wu, Jianping & Qi, Geqi, 2022. "Exploring regional sustainable commuting patterns based on dockless bike-sharing data and POI data," Journal of Transport Geography, Elsevier, vol. 102(C).
    17. Wang, Kailai & Akar, Gulsah, 2019. "Gender gap generators for bike share ridership: Evidence from Citi Bike system in New York City," Journal of Transport Geography, Elsevier, vol. 76(C), pages 1-9.
    18. Kim, Minjun & Cho, Gi-Hyoug, 2021. "Analysis on bike-share ridership for origin-destination pairs: Effects of public transit route characteristics and land-use patterns," Journal of Transport Geography, Elsevier, vol. 93(C).
    19. Jain, Taru & Wang, Xinyi & Rose, Geoffrey & Johnson, Marilyn, 2018. "Does the role of a bicycle share system in a city change over time? A longitudinal analysis of casual users and long-term subscribers," Journal of Transport Geography, Elsevier, vol. 71(C), pages 45-57.
    20. Wang, Jueyu & Lindsey, Greg, 2019. "Neighborhood socio-demographic characteristics and bike share member patterns of use," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:2:d:10.1007_s11116-018-9904-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.