IDEAS home Printed from
   My bibliography  Save this article

Valuing Curb Appeal


  • Erik B Johnson

    (University of Alabama)

  • Alan Tidwell

    (University of Alabama)

  • Sriram V Villupuram

    (University of Texas at Arlington)


We recover the value of curb appeal in residential housing by using photos obtained from Google Street View, a deep learning classification algorithm and a variety of hedonic controls. We show that own property curb appeal is worth about twice that of an across the street neighbor. Together, neighbor and own property curb appeal together may account for up to 7% of a house’s sale price. The curb appeal premium is more pronounced during times of housing market weakness and greater in neighborhoods with high average curb appeal. Results are robust to a variety of spatial controls and curb appeal specifications.

Suggested Citation

  • Erik B Johnson & Alan Tidwell & Sriram V Villupuram, 2020. "Valuing Curb Appeal," The Journal of Real Estate Finance and Economics, Springer, vol. 60(1), pages 111-133, February.
  • Handle: RePEc:kap:jrefec:v:60:y:2020:i:1:d:10.1007_s11146-019-09713-z
    DOI: 10.1007/s11146-019-09713-z

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Stephen A. Samaha & Wagner A. Kamakura, 2008. "Assessing the Market Value of Real Estate Property with a Geographically Weighted Stochastic Frontier Model," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 36(4), pages 717-751, December.
    4. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    5. Kelejian, Harry H & Prucha, Ingmar R, 1999. "A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 40(2), pages 509-533, May.
    6. Edward L. Glaeser & Michael Scott Kincaid & Nikhil Naik, 2018. "Computer Vision and Real Estate: Do Looks Matter and Do Incentives Determine Looks," NBER Working Papers 25174, National Bureau of Economic Research, Inc.
    7. Kerry D. Vandell & Jonathan S. Lane, 1989. "The Economics of Architecture and Urban Design: Some Preliminary Findings," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 17(2), pages 235-260, June.
    8. David M. Drukker & Peter Egger & Ingmar R. Prucha, 2013. "On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 686-733, August.
    9. Julia Freybote & Lauren Simon & Lauren Beitelspacher, 2016. "Understanding the contribution of curb appeal to retail real estate values," Journal of Property Research, Taylor & Francis Journals, vol. 33(2), pages 147-161, April.
    Full references (including those not matched with items on IDEAS)


    Blog mentions

    As found by, the blog aggregator for Economics research:
    1. Urban Umami or Urban Appakukan?: The Psychology of Streetscapes
      by Jason Barr in Skynomics Blog on 2020-10-22 12:34:19


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Patrick Gourley, 2021. "Curb appeal: how temporary weather patterns affect house prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 67(1), pages 107-129, August.
    2. Wan, Wayne Xinwei & Lindenthal, Thies, 2022. "Towards accountability in machine learning applications: A system-testing approach," ZEW Discussion Papers 22-001, ZEW - Leibniz Centre for European Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    2. Marina Di Giacomo & Wolfgang Nagl & Philipp Steinbrunner, 2022. "Trump Digs Votes - The Effect of Trump's Coal Campaign on the Presidential Ballot in 2016," CESifo Working Paper Series 9817, CESifo.
    3. Bivand, Roger & Piras, Gianfranco, 2015. "Comparing Implementations of Estimation Methods for Spatial Econometrics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i18).
    4. Mats A. Bergman & Johan Lundberg & Sofia Lundberg & Johan Y. Stake, 2020. "Interactions Across Firms and Bid Rigging," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 56(1), pages 107-130, February.
    5. Marcos Herrera Gomez, 2015. "Econometría espacial usando Stata. Breve guía aplicada para datos de corte transversal," Working Papers 13, Instituto de Estudios Laborales y del Desarrollo Económico (IELDE) - Universidad Nacional de Salta - Facultad de Ciencias Económicas, Jurídicas y Sociales.
    6. Colin A. Carter & Shon M. Ferguson, 2019. "Deregulation and regional specialization: Evidence from Canadian agriculture," Canadian Journal of Economics, Canadian Economics Association, vol. 52(4), pages 1497-1522, November.
    7. Doğan, Osman & Taşpınar, Süleyman, 2014. "Spatial autoregressive models with unknown heteroskedasticity: A comparison of Bayesian and robust GMM approach," Regional Science and Urban Economics, Elsevier, vol. 45(C), pages 1-21.
    8. Herrera Gómez, Marcos, 2017. "Fundamentos de Econometría Espacial Aplicada [Fundamentals of Applied Spatial Econometrics]," MPRA Paper 80871, University Library of Munich, Germany.
    9. Giovanni Abbiati & Jonathan Pratschke, 2021. "‘Like with Like’ or ‘Do Like’? Modelling Peer Effects in The Classroom," CSEF Working Papers 603, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    10. Shang, Qingyan & Poon, Jessie P.H. & Yue, Qingtang, 2012. "The role of regional knowledge spillovers on China's innovation," China Economic Review, Elsevier, vol. 23(4), pages 1164-1175.
    11. Harald Badinger & Peter Egger, 2013. "Estimation and testing of higher-order spatial autoregressive panel data error component models," Journal of Geographical Systems, Springer, vol. 15(4), pages 453-489, October.
    12. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    13. repec:rri:wpaper:201301 is not listed on IDEAS
    14. Paul Feichtinger & Klaus Salhofer, 2016. "The Fischler Reform of the Common Agricultural Policy and Agricultural Land Prices," Land Economics, University of Wisconsin Press, vol. 92(3), pages 411-432.
    15. Jülide Yildirim & Nadir Öcal, 2016. "Military expenditures, economic growth and spatial spillovers," Defence and Peace Economics, Taylor & Francis Journals, vol. 27(1), pages 87-104, February.
    16. Minmeng Tang & Deb Niemeier, 2021. "How Does Air Pollution Influence Housing Prices in the Bay Area?," IJERPH, MDPI, vol. 18(22), pages 1-13, November.
    17. Gianfranco Piras & Paolo Postiglione & Patricio Aroca, 2012. "Specialization, R&D and productivity growth: evidence from EU regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(1), pages 35-51, August.
    18. Silvia Palombi & Roger Perman & Christophe Tavéra, 2017. "Commuting effects in Okun's Law among British areas: Evidence from spatial panel econometrics," Papers in Regional Science, Wiley Blackwell, vol. 96(1), pages 191-209, March.
    19. Daniel Arribas-Bel & Jorge E Patino & Juan C Duque, 2017. "Remote sensing-based measurement of Living Environment Deprivation: Improving classical approaches with machine learning," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-25, May.
    20. Doğan, Osman & Taşpınar, Süleyman, 2013. "GMM estimation of spatial autoregressive models with moving average disturbances," Regional Science and Urban Economics, Elsevier, vol. 43(6), pages 903-926.
    21. Ward, Patrick S. & Pede, Valerien O., 2013. "Spatial Patterns of Technology Discussion: The Case of Hybrid Rice in Bangladesh," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150793, Agricultural and Applied Economics Association.

    More about this item


    Machine learning; Hedonic valuation;


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jrefec:v:60:y:2020:i:1:d:10.1007_s11146-019-09713-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.