IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v9y2007i1p7-27.html
   My bibliography  Save this article

Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method

Author

Listed:
  • Christopher Bitter
  • Gordon Mulligan
  • Sandy Dall’erba

Abstract

Hedonic house price models typically impose a constant price structure on housing characteristics throughout an entire market area. However, there is increasing evidence that the marginal prices of many important attributes vary over space, especially within large markets. In this paper, we compare two approaches to examine spatial heterogeneity in housing attribute prices within the Tucson, Arizona housing market: the spatial expansion method and geographically weighted regression (GWR). Our results provide strong evidence that the marginal price of key housing characteristics varies over space. GWR outperforms the spatial expansion method in terms of explanatory power and predictive accuracy.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Christopher Bitter & Gordon Mulligan & Sandy Dall’erba, 2007. "Incorporating spatial variation in housing attribute prices: a comparison of geographically weighted regression and the spatial expansion method," Journal of Geographical Systems, Springer, vol. 9(1), pages 7-27, April.
  • Handle: RePEc:kap:jgeosy:v:9:y:2007:i:1:p:7-27
    DOI: 10.1007/s10109-006-0028-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10109-006-0028-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-006-0028-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. William M. Bowen & Brian A. Mikelbank & Dean M. Prestegaard, 2001. "Theoretical and Empirical Considerations Regarding Space in Hedonic Housing Price Model Applications," Growth and Change, Wiley Blackwell, vol. 32(4), pages 466-490.
    2. Bourassa, Steven C. & Hoesli, Martin & Peng, Vincent S., 2003. "Do housing submarkets really matter?," Journal of Housing Economics, Elsevier, vol. 12(1), pages 12-28, March.
    3. Quigley, John M., 1985. "Consumer choice of dwelling, neighborhood and public services," Regional Science and Urban Economics, Elsevier, vol. 15(1), pages 41-63, February.
    4. Timothy J. Fik & David C. Ling & Gordon F. Mulligan, 2003. "Modeling Spatial Variation in Housing Prices: A Variable Interaction Approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 31(4), pages 623-646, December.
    5. Schnare, Ann B. & Struyk, Raymond J., 1976. "Segmentation in urban housing markets," Journal of Urban Economics, Elsevier, vol. 3(2), pages 146-166, April.
    6. Goodman, Allen C. & Thibodeau, Thomas G., 1998. "Housing Market Segmentation," Journal of Housing Economics, Elsevier, vol. 7(2), pages 121-143, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chris Leishman & Greg Costello & Steven Rowley & Craig Watkins, 2013. "The Predictive Performance of Multilevel Models of Housing Sub-markets: A Comparative Analysis," Urban Studies, Urban Studies Journal Limited, vol. 50(6), pages 1201-1220, May.
    2. Antonio Páez & Fei Long & Steven Farber, 2008. "Moving Window Approaches for Hedonic Price Estimation: An Empirical Comparison of Modelling Techniques," Urban Studies, Urban Studies Journal Limited, vol. 45(8), pages 1565-1581, July.
    3. Berna Keskin & Craig Watkins, 2017. "Defining spatial housing submarkets: Exploring the case for expert delineated boundaries," Urban Studies, Urban Studies Journal Limited, vol. 54(6), pages 1446-1462, May.
    4. Alain Coën & Alexis Pourcelot & Richard Malle, 2022. "Macroeconomic shocks and ripple effects in the Greater Paris Metropolis," Post-Print hal-03713561, HAL.
    5. Yong Tu & Hua Sun & Shi-Ming Yu, 2007. "Spatial Autocorrelations and Urban Housing Market Segmentation," The Journal of Real Estate Finance and Economics, Springer, vol. 34(3), pages 385-406, April.
    6. David C. Wheeler & Antonio Páez & Jamie Spinney & Lance A. Waller, 2014. "A Bayesian approach to hedonic price analysis," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 663-683, August.
    7. Coën, Alain & Pourcelot, Alexis & Malle, Richard, 2022. "Macroeconomic shocks and ripple effects in the Greater Paris Metropolis," Journal of Housing Economics, Elsevier, vol. 56(C).
    8. Elif Alkay, 2008. "Housing Submarkets in Istanbul," International Real Estate Review, Global Social Science Institute, vol. 11(1), pages 113-127.
    9. Pedro de Araujo & Kate Cheng, 2017. "Do Preferences For Amenities Differ Among Home Buyers? A Hedonic Price Approach," Review of Urban & Regional Development Studies, Wiley Blackwell, vol. 29(3), pages 165-184, November.
    10. Tomás Cox & Ricardo Hurtubia, 2021. "Latent Segmentation of Urban Space through Residential Location Choice," Networks and Spatial Economics, Springer, vol. 21(1), pages 199-228, March.
    11. Carol Atkinson-Palombo, 2010. "Comparing the Capitalisation Benefits of Light-rail Transit and Overlay Zoning for Single-family Houses and Condos by Neighbourhood Type in Metropolitan Phoenix, Arizona," Urban Studies, Urban Studies Journal Limited, vol. 47(11), pages 2409-2426, October.
    12. Dieudonné Tchuente & Serge Nyawa, 2022. "Real estate price estimation in French cities using geocoding and machine learning," Annals of Operations Research, Springer, vol. 308(1), pages 571-608, January.
    13. Zhuo Chen & Seong-Hoon Cho & Neelam Poudyal & Roland K. Roberts, 2009. "Forecasting Housing Prices under Different Market Segmentation Assumptions," Urban Studies, Urban Studies Journal Limited, vol. 46(1), pages 167-187, January.
    14. Jamie Spinney & Pavlos Kanaroglou & Darren Scott, 2011. "Exploring Spatial Dynamics with Land Price Indexes," Urban Studies, Urban Studies Journal Limited, vol. 48(4), pages 719-735, March.
    15. Chung-Chang Lee, 2009. "Hierarchical Linear Modeling to Explore the Influence of Satisfaction with Public Facilities on Housing Prices," International Real Estate Review, Global Social Science Institute, vol. 12(3), pages 252-272.
    16. Khalid Haniza, 2015. "Spatial heterogeneity and spatial bias analyses in hedonic price models: some practical considerations," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 28(28), pages 113-128, June.
    17. Costanigro, Marco & McCluskey, Jill J. & Mittelhammer, Ronald C., 2006. "Identifying submarket in the wine industry: a multivariate approach to hedonic regression," 2006 Annual meeting, July 23-26, Long Beach, CA 21370, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    18. Kopczewska, Katarzyna & Ćwiakowski, Piotr, 2021. "Spatio-temporal stability of housing submarkets. Tracking spatial location of clusters of geographically weighted regression estimates of price determinants," Land Use Policy, Elsevier, vol. 103(C).
    19. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    20. repec:asg:wpaper:1044 is not listed on IDEAS
    21. Biswas, Arnab, 2012. "Housing submarkets and the impacts of foreclosures on property prices," Journal of Housing Economics, Elsevier, vol. 21(3), pages 235-245.

    More about this item

    Keywords

    Hedonic model; House price; Spatial heterogeneity; Expansion method; Geographically weighted regression; C31; C51; C52; R21; R31;
    All these keywords.

    JEL classification:

    • R0 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:9:y:2007:i:1:p:7-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.