IDEAS home Printed from https://ideas.repec.org/a/kap/jgeosy/v25y2023i3d10.1007_s10109-023-00404-1.html
   My bibliography  Save this article

A framework for modern time geography: emphasizing diverse constraints on accessibility

Author

Listed:
  • Somayeh Dodge

    (University of California Santa Barbara)

  • Trisalyn A. Nelson

    (University of California Santa Barbara)

Abstract

Time geography is widely used by geographers as a model for understanding accessibility. Recent changes in how access is created, an increasing awareness of the need to better understand individual variability in access, and growing availability of detailed spatial and mobility data have created an opportunity to build more flexible time geography models. Our goal is to outline a research agenda for a modern time geography that allows new modes of access and a variety of data to flexibly represent the complexity of the relationship between time and access. A modern time geography is more able to nuance individual experience and creates a pathway for monitoring progress toward inclusion. We lean on the original work by Hägerstrand and the field of movement GIScience to develop both a framework and research roadmap that, if addressed, can enhance the flexibility of time geography to help ensure time geography will continue as a cornerstone of accessibility research. The proposed framework emphasizes the individual and differentiates access based on how individuals experience internal, external, and structural factors. To enhance nuanced representation of inclusion and exclusion, we propose research needs, focusing efforts on implementing flexible space–time constraints, inclusion of definitive variables, addressing mechanisms for representing and including relative variables, and addressing the need to link between individual and population scales of analysis. The accelerated digitalization of society, including availability of new forms of digital spatial data, combined with a focus on understanding how access varies across race, income, sexual identity, and physical limitations requires new consideration for how we include constraints in our studies of access. It is an exciting era for time geography and there are massive opportunities for all geographers to consider how to incorporate new realities and research priorities into time geography models, which have had a long tradition of supporting theory and implementation of accessibility research.

Suggested Citation

  • Somayeh Dodge & Trisalyn A. Nelson, 2023. "A framework for modern time geography: emphasizing diverse constraints on accessibility," Journal of Geographical Systems, Springer, vol. 25(3), pages 357-375, July.
  • Handle: RePEc:kap:jgeosy:v:25:y:2023:i:3:d:10.1007_s10109-023-00404-1
    DOI: 10.1007/s10109-023-00404-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10109-023-00404-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10109-023-00404-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zachary Patterson & Steven Farber, 2015. "Potential Path Areas and Activity Spaces in Application: A Review," Transport Reviews, Taylor & Francis Journals, vol. 35(6), pages 679-700, November.
    2. McIntosh, Emma & Clarke, Philip & Frew, Emma & Louviere, Jordan (ed.), 2010. "Applied Methods of Cost-Benefit Analysis in Health Care," OUP Catalogue, Oxford University Press, number 9780199237128, Decembrie.
    3. Rongxiang Su & Somayeh Dodge & Konstadinos G. Goulias, 2022. "Understanding the impact of temporal scale on human movement analytics," Journal of Geographical Systems, Springer, vol. 24(3), pages 353-388, July.
    4. Richard J. Lee & Ipek N. Sener & S. Nathan Jones, 2017. "Understanding the role of equity in active transportation planning in the United States," Transport Reviews, Taylor & Francis Journals, vol. 37(2), pages 211-226, March.
    5. Anne Brown, 2022. "From aspiration to operation: ensuring equity in transportation," Transport Reviews, Taylor & Francis Journals, vol. 42(4), pages 409-414, July.
    6. Meghan Winters & Gavin Davidson & Diana Kao & Kay Teschke, 2011. "Motivators and deterrents of bicycling: comparing influences on decisions to ride," Transportation, Springer, vol. 38(1), pages 153-168, January.
    7. Su, Rongxiang & McBride, Elizabeth C. & Goulias, Konstadinos G., 2021. "Unveiling daily activity pattern differences between telecommuters and commuters using human mobility motifs and sequence analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 106-132.
    8. Margareta Friman & Katrin Lättman & Lars E. Olsson, 2020. "Public Transport Quality, Safety, and Perceived Accessibility," Sustainability, MDPI, vol. 12(9), pages 1-14, April.
    9. Antonio Páez & Ruben Gertes Mercado & Steven Farber & Catherine Morency & Matthew Roorda, 2010. "Relative Accessibility Deprivation Indicators for Urban Settings: Definitions and Application to Food Deserts in Montreal," Urban Studies, Urban Studies Journal Limited, vol. 47(7), pages 1415-1438, June.
    10. Wei, Ran & Liu, Xiaoyue & Mu, Yongjian & Wang, Liming & Golub, Aaron & Farber, Steven, 2017. "Evaluating public transit services for operational efficiency and access equity," Journal of Transport Geography, Elsevier, vol. 65(C), pages 70-79.
    11. McQuoid, Julia & Dijst, Martin, 2012. "Bringing emotions to time geography: the case of mobilities of poverty," Journal of Transport Geography, Elsevier, vol. 23(C), pages 26-34.
    12. Amy Lubitow & Jennifer Rainer & Sasha Bassett, 2017. "Exclusion and vulnerability on public transit: experiences of transit dependent riders in Portland, Oregon," Mobilities, Taylor & Francis Journals, vol. 12(6), pages 924-937, November.
    13. Armita Kar & Huyen T. K. Le & Harvey J. Miller, 2022. "What Is Essential Travel? Socioeconomic Differences in Travel Demand in Columbus, Ohio, during the COVID-19 Lockdown," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 112(4), pages 1023-1046, April.
    14. Shaw, Shih-Lung & Yu, Hongbo, 2009. "A GIS-based time-geographic approach of studying individual activities and interactions in a hybrid physical–virtual space," Journal of Transport Geography, Elsevier, vol. 17(2), pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vanessa Brum-Bastos & Antonio Páez, 2023. "Hägerstrand meets big data: time-geography in the age of mobility analytics," Journal of Geographical Systems, Springer, vol. 25(3), pages 327-336, July.
    2. Daniela Arias-Molinares & Juan Carlos García-Palomares & Gustavo Romanillos & Javier Gutiérrez, 2023. "Uncovering spatiotemporal micromobility patterns through the lens of space–time cubes and GIS tools," Journal of Geographical Systems, Springer, vol. 25(3), pages 403-427, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olle Järv & Kerli Müürisepp & Rein Ahas & Ben Derudder & Frank Witlox, 2015. "Ethnic differences in activity spaces as a characteristic of segregation: A study based on mobile phone usage in Tallinn, Estonia," Urban Studies, Urban Studies Journal Limited, vol. 52(14), pages 2680-2698, November.
    2. David Wong & Shih-Lung Shaw, 2011. "Measuring segregation: an activity space approach," Journal of Geographical Systems, Springer, vol. 13(2), pages 127-145, June.
    3. Martens, Karel, 2018. "Ageing, impairments and travel: Priority setting for an inclusive transport system," Transport Policy, Elsevier, vol. 63(C), pages 122-130.
    4. Zhang, Shanqi & Yang, Yu & Zhen, Feng & Lobsang, Tashi & Li, Zhixuan, 2021. "Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: An activity space-based approach," Journal of Transport Geography, Elsevier, vol. 90(C).
    5. Downs, Joni A. & Horner, Mark W., 2012. "Probabilistic potential path trees for visualizing and analyzing vehicle tracking data," Journal of Transport Geography, Elsevier, vol. 23(C), pages 72-80.
    6. Su, Rongxiang & Goulias, Konstadinos, 2023. "Untangling the relationships among residential environment, destination choice, and daily walk accessibility," Journal of Transport Geography, Elsevier, vol. 109(C).
    7. Katarzyna Sila-Nowicka & A. Stewart Fotheringham & Urška Demšar, 2023. "Activity triangles: a new approach to measure activity spaces," Journal of Geographical Systems, Springer, vol. 25(4), pages 489-517, October.
    8. Chen, Jie & Shaw, Shih-Lung & Yu, Hongbo & Lu, Feng & Chai, Yanwei & Jia, Qinglei, 2011. "Exploratory data analysis of activity diary data: a space–time GIS approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 394-404.
    9. Calvey, J.C. & Shackleton, J.P. & Taylor, M.D. & Llewellyn, R., 2015. "Engineering condition assessment of cycling infrastructure: Cyclists’ perceptions of satisfaction and comfort," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 134-143.
    10. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    11. Awaworyi Churchill, Sefa & Koomson, Isaac & Munyanyi, Musharavati Ephraim, 2023. "Transport poverty and obesity: The mediating roles of social capital and physical activity," Transport Policy, Elsevier, vol. 130(C), pages 155-166.
    12. Aguiléra, Anne & Guillot, Caroline & Rallet, Alain, 2012. "Mobile ICTs and physical mobility: Review and research agenda," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 664-672.
    13. Rui Xiao & Guofeng Wang & Meng Wang, 2018. "Transportation Disadvantage and Neighborhood Sociodemographics: A Composite Indicator Approach to Examining Social Inequalities," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 137(1), pages 29-43, May.
    14. Rafal Stachyra & Kamil Roman, 2021. "Analysis of Accessibility of Public Transport in Warsaw in the Opinion of Users," Postmodern Openings, Editura Lumen, Department of Economics, vol. 12(3), pages 384-403, August.
    15. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    16. Chandra, Shailesh & Jimenez, Jose & Radhakrishnan, Ramalingam, 2017. "Accessibility evaluations for nighttime walking and bicycling for low-income shift workers," Journal of Transport Geography, Elsevier, vol. 64(C), pages 97-108.
    17. Higgins, Christopher D. & Páez, Antonio & Kim, Gyoorie & Wang, Jue, 2021. "Changes in accessibility to emergency and community food services during COVID-19 and implications for low income populations in Hamilton, Ontario," Social Science & Medicine, Elsevier, vol. 291(C).
    18. Pierluigi Coppola & Fulvio Silvestri, 2021. "Gender Inequality in Safety and Security Perceptions in Railway Stations," Sustainability, MDPI, vol. 13(7), pages 1-15, April.
    19. Olsen, Jonathan R. & Mitchell, Richard & McCrorie, Paul & Ellaway, Anne, 2019. "Children's mobility and environmental exposures in urban landscapes: A cross-sectional study of 10–11 year old Scottish children," Social Science & Medicine, Elsevier, vol. 224(C), pages 11-22.
    20. Pengyu Ren & Zhaoxia Liu, 2021. "Efficiency Evaluation of China’s Public Sports Services: A Three-Stage DEA Model," IJERPH, MDPI, vol. 18(20), pages 1-12, October.

    More about this item

    Keywords

    Time geography; Mobility analytics; Big data; Social sensing; Geospatial data representativeness;
    All these keywords.

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • I14 - Health, Education, and Welfare - - Health - - - Health and Inequality

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jgeosy:v:25:y:2023:i:3:d:10.1007_s10109-023-00404-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.