IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v66y2025i1d10.1007_s10614-024-10686-2.html
   My bibliography  Save this article

Considering Appropriate Input Features of Neural Network to Calibrate Option Pricing Models

Author

Listed:
  • Hyun-Gyoon Kim

    (Ajou University)

  • Hyeongmi Kim

    (Nice Pricing & Information)

  • Jeonggyu Huh

    (Sungkyunkwan University)

Abstract

Parameter estimation is crucial in using option pricing models, but it is often an ill-conditioned problem. While it has been demonstrated that neural networks can enhance the efficiency of multiple tasks, when performing parameter estimation using option prices data, the neural network approaches are fundamentally vulnerable because the task is one of the ill-conditioned problems. To address the issue, we propose a bijective transformation of the input features of a neural network to transform the ill-conditioned problem into an equivalent well-conditioned problem. This transformation can be simply summarized as using the corresponding implied volatilities as input features instead of option prices. Experiments have shown that the estimation network that use the transformed values as network inputs have significantly improved efficiency compared to the network that use the original values.

Suggested Citation

  • Hyun-Gyoon Kim & Hyeongmi Kim & Jeonggyu Huh, 2025. "Considering Appropriate Input Features of Neural Network to Calibrate Option Pricing Models," Computational Economics, Springer;Society for Computational Economics, vol. 66(1), pages 77-104, July.
  • Handle: RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10686-2
    DOI: 10.1007/s10614-024-10686-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10686-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10686-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:66:y:2025:i:1:d:10.1007_s10614-024-10686-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.