IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.14762.html
   My bibliography  Save this paper

Statistical Arbitrage in Options Markets by Graph Learning and Synthetic Long Positions

Author

Listed:
  • Yoonsik Hong
  • Diego Klabjan

Abstract

Statistical arbitrages (StatArbs) driven by machine learning has garnered considerable attention in both academia and industry. Nevertheless, deep-learning (DL) approaches to directly exploit StatArbs in options markets remain largely unexplored. Moreover, prior graph learning (GL) -- a methodological basis of this paper -- studies overlooked that features are tabular in many cases and that tree-based methods outperform DL on numerous tabular datasets. To bridge these gaps, we propose a two-stage GL approach for direct identification and exploitation of StatArbs in options markets. In the first stage, we define a novel prediction target isolating pure arbitrages via synthetic bonds. To predict the target, we develop RNConv, a GL architecture incorporating a tree structure. In the second stage, we propose SLSA -- a class of positions comprising pure arbitrage opportunities. It is provably of minimal risk and neutral to all Black-Scholes risk factors under the arbitrage-free assumption. We also present the SLSA projection converting predictions into SLSA positions. Our experiments on KOSPI 200 index options show that RNConv statistically significantly outperforms GL baselines, and that SLSA consistently yields positive returns, achieving an average P&L-contract information ratio of 0.1627. Our approach offers a novel perspective on the prediction target and strategy for exploiting StatArbs in options markets through the lens of DL, in conjunction with a pioneering tree-based GL.

Suggested Citation

  • Yoonsik Hong & Diego Klabjan, 2025. "Statistical Arbitrage in Options Markets by Graph Learning and Synthetic Long Positions," Papers 2508.14762, arXiv.org, revised Aug 2025.
  • Handle: RePEc:arx:papers:2508.14762
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.14762
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali, Usman & Hirshleifer, David, 2020. "Shared analyst coverage: Unifying momentum spillover effects," Journal of Financial Economics, Elsevier, vol. 136(3), pages 649-675.
    2. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    3. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    4. Liu, Xiaoquan & Cao, Yi & Ma, Chenghu & Shen, Liya, 2019. "Wavelet-based option pricing: An empirical study," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1132-1142.
    5. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    6. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    7. Johannes Ruf & Weiguan Wang, 2019. "Neural networks for option pricing and hedging: a literature review," Papers 1911.05620, arXiv.org, revised May 2020.
    8. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    9. Jorge Guijarro-Ordonez & Markus Pelger & Greg Zanotti, 2021. "Deep Learning Statistical Arbitrage," Papers 2106.04028, arXiv.org, revised Oct 2022.
    10. Natividad Blasco & Pilar Corredor & Rafael Santamaría, 2010. "Does informed trading occur in the options market? Some revealing clues," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 50(3), pages 555-579, September.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Rubinstein, Mark, 1983. "Displaced Diffusion Option Pricing," Journal of Finance, American Finance Association, vol. 38(1), pages 213-217, March.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Horikawa, Hiroaki & Nakagawa, Kei, 2024. "Relationship between deep hedging and delta hedging: Leveraging a statistical arbitrage strategy," Finance Research Letters, Elsevier, vol. 62(PA).
    15. Junhuan Zhang & Wenjun Huang, 2021. "Option hedging using LSTM-RNN: an empirical analysis," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1753-1772, October.
    16. Yao Wang & Jingmei Zhao & Qing Li & Xiangyu Wei, 2024. "Considering momentum spillover effects via graph neural network in option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(6), pages 1069-1094, June.
    17. Varian, Hal R, 1987. "The Arbitrage Principle in Financial Economics," Journal of Economic Perspectives, American Economic Association, vol. 1(2), pages 55-72, Fall.
    18. ter Horst, Jenke R. & Nijman, Theo E. & Verbeek, Marno, 2001. "Eliminating look-ahead bias in evaluating persistence in mutual fund performance," Journal of Empirical Finance, Elsevier, vol. 8(4), pages 345-373, September.
    19. Weiguan Wang & Jia Xu, 2024. "Deep Learning Option Price Movement," Risks, MDPI, vol. 12(6), pages 1-17, June.
    20. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    21. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    22. François, Pascal & Gauthier, Geneviève & Godin, Frédéric & Mendoza, Carlos Octavio Pérez, 2025. "Is the difference between deep hedging and delta hedging a statistical arbitrage?," Finance Research Letters, Elsevier, vol. 73(C).
    23. Anand, Amber & Chakravarty, Sugato, 2007. "Stealth Trading in Options Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(1), pages 167-187, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Chen, Ding & Härkönen, Hannu J. & Newton, David P., 2014. "Advancing the universality of quadrature methods to any underlying process for option pricing," Journal of Financial Economics, Elsevier, vol. 114(3), pages 600-612.
    4. Francesco Rotondi, 2019. "American Options on High Dividend Securities: A Numerical Investigation," Risks, MDPI, vol. 7(2), pages 1-20, May.
    5. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    6. John Freddy Moreno Trujillo, 2015. "Modelos estocásticos en finanzas," Books, Universidad Externado de Colombia, Facultad de Finanzas, Gobierno y Relaciones Internacionales, edition 1, number 97.
    7. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, October.
    8. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    9. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    10. Akanksha Sharma & Chandan Kumar Verma & Priya Singh, 2025. "Enhancing Option Pricing Accuracy in the Indian Market: A CNN-BiLSTM Approach," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3751-3778, June.
    11. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    12. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    13. Giandomenico, Rossano, 2016. "Option Pricing Models," MPRA Paper 73353, University Library of Munich, Germany.
    14. Dasheng Ji & B. Brorsen, 2011. "A recombining lattice option pricing model that relaxes the assumption of lognormality," Review of Derivatives Research, Springer, vol. 14(3), pages 349-367, October.
    15. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    16. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    17. Ako Doffou & Jimmy E. Hilliard, 2001. "Pricing Currency Options Under Stochastic Interest Rates And Jump-Diffusion Processes," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 24(4), pages 565-585, December.
    18. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    19. Kristensen, Dennis, 2008. "Estimation of partial differential equations with applications in finance," Journal of Econometrics, Elsevier, vol. 144(2), pages 392-408, June.
    20. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.14762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.