IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i6d10.1007_s10614-024-10679-1.html
   My bibliography  Save this article

Research of Dempster-Shafer’s Theory and Ensemble Classifier Financial Risk Early Warning Model Based on Benford’s Law

Author

Listed:
  • Zihao Liu

    (Nanjing University of Science and Technology)

  • Di Li

    (Chongqing University of Technology)

Abstract

Previous research endeavors aimed at enhancing the predictive accuracy of early warning systems for enterprise financial risks have primarily focused on two key areas: optimization of financial risk early warning indicators and development of combination models. However, crucial issues relating to the uncertainty arising from divergent assessment results among multiple classifiers analyzing the same sample data in financial risk early warning, as well as the impact of distorted financial indicator data on the predictive performance of financial early warning models, have remained largely unexplored. This study employs Benford’s law to establish a comprehensive early warning indicator system for financial risks, incorporating its inherent factors. Additionally, the DS-evidence theory is utilized to seamlessly integrate Logistic Regression (LR), Naïve Bayes (NB), Support Vector Machine (SVM), Gradient Boosted Decision Tree (GBDT), and AdaBoost classifiers into an ensemble classifier named the Dempster-Shafer’s theory and Ensemble Classifier (DS-EC) financial risk warning model. The findings demonstrate that: (1) The DS-EC model effectively resolves the issue of uncertainty resulting from diverse evaluation results among multiple classifiers analyzing identical sample data, significantly outperforming LR, NB, SVM, GBDT, and AdaBoost in terms of predictive accuracy. (2) Benford’s law proves to be a robust technique for detecting fraudulent risks within financial data, and its amalgamation with the DC-EC financial risk warning model enhances the model’s predictive accuracy.

Suggested Citation

  • Zihao Liu & Di Li, 2025. "Research of Dempster-Shafer’s Theory and Ensemble Classifier Financial Risk Early Warning Model Based on Benford’s Law," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3361-3389, June.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10679-1
    DOI: 10.1007/s10614-024-10679-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10679-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10679-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    2. Faisal Khalil & Gordon Pipa, 2022. "Is Deep-Learning and Natural Language Processing Transcending the Financial Forecasting? Investigation Through Lens of News Analytic Process," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 147-171, June.
    3. Alhanouf Abdulrahman Saleh Alsuwailem & Emad Salem & Abdul Khader Jilani Saudagar, 2023. "Performance of Different Machine Learning Algorithms in Detecting Financial Fraud," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1631-1667, December.
    4. Rui Ding, 2022. "Enterprise Intelligent Audit Model by Using Deep Learning Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1335-1354, April.
    5. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    6. Yuegang Song & Ruibing Wu, 2022. "The Impact of Financial Enterprises’ Excessive Financialization Risk Assessment for Risk Control based on Data Mining and Machine Learning," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1245-1267, December.
    7. Wen Jiang & Jun Zhan & Deyun Zhou & Xin Li, 2016. "A Method to Determine Generalized Basic Probability Assignment in the Open World," Mathematical Problems in Engineering, Hindawi, vol. 2016, pages 1-11, May.
    8. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    9. Wei-dong Zhu & Fang Liu & Yu-wang Chen & Jian-bo Yang & Dong-ling Xu & Dong-peng Wang, 2015. "Research project evaluation and selection: an evidential reasoning rule-based method for aggregating peer review information with reliabilities," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1469-1490, December.
    10. repec:eme:mfppss:mf-12-2016-0372 is not listed on IDEAS
    11. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    12. Hyeongjun Kim & Hoon Cho & Doojin Ryu, 2022. "Corporate Bankruptcy Prediction Using Machine Learning Methodologies with a Focus on Sequential Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1231-1249, March.
    13. Fang Liu & Wei-dong Zhu & Yu-wang Chen & Dong-ling Xu & Jian-bo Yang, 2017. "Evaluation, ranking and selection of R&D projects by multiple experts: an evidential reasoning rule based approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(3), pages 1501-1519, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Weidong & Zhang, Tianjiao & Wu, Yong & Li, Shaorong & Li, Zhimin, 2022. "Research on optimization of an enterprise financial risk early warning method based on the DS-RF model," International Review of Financial Analysis, Elsevier, vol. 81(C).
    2. Juraini Zainol Abidin & Nur Adiana Hiau Abdullah & Karren Lee-Hwei Khaw, 2020. "Predicting SMEs Failure: Logistic Regression vs Artificial Neural Network Models," Capital Markets Review, Malaysian Finance Association, vol. 28(2), pages 29-41.
    3. Fedorova, Elena & Ledyaeva, Svetlana & Drogovoz, Pavel & Nevredinov, Alexandr, 2022. "Economic policy uncertainty and bankruptcy filings," International Review of Financial Analysis, Elsevier, vol. 82(C).
    4. Philippe du Jardin, 2025. "A Quantification Approach of Changes in Firms' Financial Situation Using Neural Networks for Predicting Bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(2), pages 781-802, March.
    5. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    6. Yin Shi & Xiaoni Li, 2021. "Determinants of financial distress in the European air transport industry: The moderating effect of being a flag-carrier," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-17, November.
    7. Liang, Deron & Tsai, Chih-Fong & Lu, Hung-Yuan (Richard) & Chang, Li-Shin, 2020. "Combining corporate governance indicators with stacking ensembles for financial distress prediction," Journal of Business Research, Elsevier, vol. 120(C), pages 137-146.
    8. Antonio Davila & George Foster & Xiaobin He & Carlos Shimizu, 2015. "The rise and fall of startups: Creation and destruction of revenue and jobs by young companies," Australian Journal of Management, Australian School of Business, vol. 40(1), pages 6-35, February.
    9. Li, Chunyu & Lou, Chenxin & Luo, Dan & Xing, Kai, 2021. "Chinese corporate distress prediction using LASSO: The role of earnings management," International Review of Financial Analysis, Elsevier, vol. 76(C).
    10. Pavol Durana & Lucia Michalkova & Andrej Privara & Josef Marousek & Milos Tumpach, 2021. "Does the life cycle affect earnings management and bankruptcy?," Oeconomia Copernicana, Institute of Economic Research, vol. 12(2), pages 425-461, June.
    11. Philippe Jardin, 2025. "Designing Ensemble-Based Models Using Neural Networks and Temporal Financial Profiles to Forecast Firms’ Financial Failure," Computational Economics, Springer;Society for Computational Economics, vol. 65(1), pages 149-209, January.
    12. Simon Cornée, 2014. "Soft Information and Default Prediction in Cooperative and Social Banks," Journal of Entrepreneurial and Organizational Diversity, European Research Institute on Cooperative and Social Enterprises, vol. 3(1), pages 89-103, June.
    13. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    14. Modina, Michele & Pietrovito, Filomena & Gallucci, Carmen & Formisano, Vincenzo, 2023. "Predicting SMEs’ default risk: Evidence from bank-firm relationship data," The Quarterly Review of Economics and Finance, Elsevier, vol. 89(C), pages 254-268.
    15. Jie Sun & Jie Li & Hamido Fujita & Wenguo Ai, 2023. "Multiclass financial distress prediction based on one‐versus‐one decomposition integrated with improved decision‐directed acyclic graph," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1167-1186, August.
    16. Guido Max Mantovani & Gregory Gadzinski, 2022. "How to Rate the Financial Performance of Private Companies? A Tailored Integrated Rating Methodology Applied to North-Eastern Italian Districts," JRFM, MDPI, vol. 15(11), pages 1-18, October.
    17. Enrico Supino & Nicola Piras, 2022. "Le performance dei modelli di credit scoring in contesti di forte instabilit? macroeconomica: il ruolo delle Reti Neurali Artificiali," MANAGEMENT CONTROL, FrancoAngeli Editore, vol. 2022(2), pages 41-61.
    18. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    19. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    20. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10679-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.