IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i6d10.1007_s10614-024-10634-0.html
   My bibliography  Save this article

A Generalized Hyperbolic Distance Function for Benchmarking Performance: Estimation and Inference

Author

Listed:
  • Paul W. Wilson

    (Clemson University)

Abstract

This paper describes a new multiplicative, generalized hyperbolic distance function (GHDF) that allows the researcher to measure technical efficiency while holding a subset of inputs or outputs fixed. This is useful when dealing with “bad” or undesirable outputs, or in applications where some inputs or outputs are regarded as quasi-fixed. The paper provides computational methods for both free-disposal hull and data envelopment analysis estimators of the GHDF. In addition, statistical properties of the estimators are derived, enabling researchers to make inference and test hypotheses. An empirical illustration using data on U.S. credit unions is provided, as well as Monte Carlo evidence on the performance of the estimators. As illustrated in the empirical example, estimates of the GHDF are easier to interpret than estimates of additive, directional distance functions that until know have been the only non-parametric estimator of efficiency allowing subsets of input our outputs to be held constant.

Suggested Citation

  • Paul W. Wilson, 2025. "A Generalized Hyperbolic Distance Function for Benchmarking Performance: Estimation and Inference," Computational Economics, Springer;Society for Computational Economics, vol. 65(6), pages 3077-3110, June.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10634-0
    DOI: 10.1007/s10614-024-10634-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10634-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10634-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    DEA; Efficiency; FDH; Hyperbolic; Non-parametric;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10634-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.