IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v65y2025i4d10.1007_s10614-024-10628-y.html
   My bibliography  Save this article

Dynamic Modeling and Simulation of Option Pricing Based on Fractional Diffusion Equations with Double Derivatives

Author

Listed:
  • Lina Song

    (Dongbei University of Finance and Economics)

Abstract

The work adopts Caputo fractional derivative, conformable fractional derivative and local fractional derivative to study option pricing problems in fractal financial market. Under local and nonlocal fractional derivatives, space-time fractional diffusion equations of option pricing are established by the replicating portfolios and the theorems of fractional calculus. Option pricing models with double fractional derivatives are dealt with by an enhanced technique of Homotopy perturbation method. Adaptive and analytical approximate pricing formulas are derived. With the help of symbolic computation softwares, the results are tested through the data from China mainland market. Practical examples illustrate the feasibilities and effectiveness of the proposed models. The work tries to employ advanced fractional calculus to establish new option pricing models and provide new tools for financial derivatives pricing.

Suggested Citation

  • Lina Song, 2025. "Dynamic Modeling and Simulation of Option Pricing Based on Fractional Diffusion Equations with Double Derivatives," Computational Economics, Springer;Society for Computational Economics, vol. 65(4), pages 2205-2225, April.
  • Handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10628-y
    DOI: 10.1007/s10614-024-10628-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-024-10628-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-024-10628-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, W., 2006. "Time–space fabric underlying anomalous diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 923-929.
    2. Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007. "Fractional diffusion models of option prices in markets with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
    3. El-Dib, Yusry O., 2021. "Homotopy perturbation method with rank upgrading technique for the superior nonlinear oscillation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 555-565.
    4. Mustapha, Umar Tasiu & Qureshi, Sania & Yusuf, Abdullahi & Hincal, Evren, 2020. "Fractional modeling for the spread of Hookworm infection under Caputo operator," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    5. Ziqiang Lu & Hongyan Yan & Yuanguo Zhu, 2019. "European option pricing model based on uncertain fractional differential equation," Fuzzy Optimization and Decision Making, Springer, vol. 18(2), pages 199-217, June.
    6. Kumar, S. & Das, Subir & Ong, S.H., 2021. "Analysis of tumor cells in the absence and presence of chemotherapeutic treatment: The case of Caputo-Fabrizio time fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jian & Zhu, Yuanguo & Gu, Yajing & Lu, Ziqiang, 2021. "Solutions of linear uncertain fractional order neutral differential equations," Applied Mathematics and Computation, Elsevier, vol. 407(C).
    2. Liu, Hanjie & Zhu, Yuanguo, 2024. "Carbon option pricing based on uncertain fractional differential equation: A binomial tree approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 13-28.
    3. Jin, Ting & Zhu, Yuanguo, 2020. "First hitting time about solution for an uncertain fractional differential equation and application to an uncertain risk index model," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    4. Yi-Long Hsiao & Chien-Jung Ting, 2022. "Pricing Rent-to-Own Options with a Barrier Level: Taking Housing Contracts as an Example," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 12(5), pages 1-3.
    5. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    6. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    7. Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
    8. Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    9. Badshah, Fazal & Tariq, Kalim U. & Ilyas, Hamza & Tufail, R. Nadir, 2024. "Soliton, lumps, stability analysis and modulation instability for an extended (2+1)-dimensional Boussinesq model in shallow water," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
    10. Jin, Ting & Yang, Xiangfeng, 2021. "Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 203-221.
    11. Caiwen Gao & Zhiqiang Zhang & Baoliang Liu, 2022. "Uncertain Population Model with Jumps," Mathematics, MDPI, vol. 10(13), pages 1-12, June.
    12. Wang, Yong & Wang, Yunhui & Zhang, Zejia & Sun, Lang & Yang, Rui & Sapnken, Flavian Emmanuel & Xiao, Wenlian, 2025. "A novel fractional-order kernel regularized non-homogeneous grey Riccati model and its application in oil reserves prediction," Energy, Elsevier, vol. 316(C).
    13. Reem Abdullah Aljedhi & Adem Kılıçman, 2020. "Fractional Partial Differential Equations Associated with L ê vy Stable Process," Mathematics, MDPI, vol. 8(4), pages 1-7, April.
    14. Aljethi, Reem Abdullah & Kılıçman, Adem, 2023. "Analysis of fractional differential equation and its application to realistic data," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Yuanda Chen & Zailei Cheng & Haixu Wang, 2023. "Option Pricing for the Variance Gamma Model: A New Perspective," Papers 2306.10659, arXiv.org.
    16. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    17. Kumar, Sunil & Chauhan, R.P. & Momani, Shaher & Hadid, Samir, 2021. "A study of fractional TB model due to mycobacterium tuberculosis bacteria," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    18. Kim, Kyong-Hui & Kim, Nam-Ung & Ju, Dong-Chol & Ri, Ju-Hyang, 2020. "Efficient hedging currency options in fractional Brownian motion model with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    19. Paula Morales-Bañuelos & Sebastian Elias Rodríguez Bojalil & Luis Alberto Quezada-Téllez & Guillermo Fernández-Anaya, 2025. "A General Conformable Black–Scholes Equation for Option Pricing," Mathematics, MDPI, vol. 13(10), pages 1-29, May.
    20. Yan, Ruifang & He, Ying & Zuo, Qian, 2021. "A difference method with parallel nature for solving time-space fractional Black-Schole model," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10628-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.