IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v233y2025icp448-474.html
   My bibliography  Save this article

Energy-preserving exponential wave integrator method and the long-time dynamics for the two-dimensional space fractional coupled Klein–Gordon–Dirac equation

Author

Listed:
  • Zhang, Pingrui
  • Jiang, Xiaoyun
  • Jia, Junqing

Abstract

In this article, uniform error bounds of an exponential wave integrator Fourier pseudo-spectral (EWIFP) method are established for the long-time dynamics of two-dimensional nonlinear space fractional Klein–Gordon–Dirac equation (NSFKGDE) with a small coupling parameter ɛ∈(0,1] and small potentials. By using the Fourier spectral discretization in space, followed with a second-order exponential wave integrator based on certain efficient quadrature rule in phase field, we construct a time-symmetric and energy-preserving numerical scheme. Rigorous analysis of uniform error bounds at Ohm0+ɛ1−γτ2 for γ∈[0,1] is carried out with the tool of cut-off technique as well as the energy method. Extensive numerical experiments demonstrate that the proposed discretization performs identically with our theoretical results. For applications, we profile the dynamical evolution of NSFKGDE in two dimensions (2D) with a honeycomb lattice potential, which correlates greatly with coupling, amplitude of potentials and fractional orders.

Suggested Citation

  • Zhang, Pingrui & Jiang, Xiaoyun & Jia, Junqing, 2025. "Energy-preserving exponential wave integrator method and the long-time dynamics for the two-dimensional space fractional coupled Klein–Gordon–Dirac equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 233(C), pages 448-474.
  • Handle: RePEc:eee:matcom:v:233:y:2025:i:c:p:448-474
    DOI: 10.1016/j.matcom.2025.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475425000448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2025.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, W., 2006. "Time–space fabric underlying anomalous diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 923-929.
    2. Hu, Dongdong & Cai, Wenjun & Xu, Zhuangzhi & Bo, Yonghui & Wang, Yushun, 2021. "Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine–Gordon equation with damping," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 35-59.
    3. Wang, Junjie & Xiao, Aiguo, 2019. "Conservative Fourier spectral method and numerical investigation of space fractional Klein–Gordon–Schrödinger equations," Applied Mathematics and Computation, Elsevier, vol. 350(C), pages 348-365.
    4. Li, Jiyong, 2023. "Optimal error estimates of a time-splitting Fourier pseudo-spectral scheme for the Klein–Gordon–Dirac equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 398-423.
    5. Wang, Xianfen & Li, Jiyong, 2023. "Convergence analysis of two conservative finite difference fourier pseudo-spectral schemes for klein-Gordon-Dirac system," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Qiong-Ao & Zhang, Gengen & Wu, Bing, 2022. "Fully-discrete energy-preserving scheme for the space-fractional Klein–Gordon equation via Lagrange multiplier type scalar auxiliary variable approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 192(C), pages 265-277.
    2. Guo, Yantao & Fu, Yayun, 2023. "Two efficient exponential energy-preserving schemes for the fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 209(C), pages 169-183.
    3. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    4. Wu, Longbin & Ma, Qiang & Ding, Xiaohua, 2021. "Energy-preserving scheme for the nonlinear fractional Klein–Gordon Schrödinger equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1110-1129.
    5. Chen, Wen & Liang, Yingjie, 2017. "New methodologies in fractional and fractal derivatives modeling," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 72-77.
    6. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    7. Li, Jiyong & Fang, Hongyu, 2023. "Improved uniform error bounds of a time-splitting Fourier pseudo-spectral scheme for the Klein–Gordon–Schrödinger equation with the small coupling constant," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 212(C), pages 267-288.
    8. Chai, Li & Liu, Yang & Li, Hong & Fang, Zhichao, 2025. "Structure-preserving compact ADI schemes for the space fractional Klein-Gordon-Schrödinger equations and the dynamic simulation of solitary wave solutions," Applied Mathematics and Computation, Elsevier, vol. 500(C).
    9. Sun, HongGuang & Li, Zhipeng & Zhang, Yong & Chen, Wen, 2017. "Fractional and fractal derivative models for transient anomalous diffusion: Model comparison," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 346-353.
    10. Duarte Valério & Manuel D. Ortigueira & António M. Lopes, 2022. "How Many Fractional Derivatives Are There?," Mathematics, MDPI, vol. 10(5), pages 1-18, February.
    11. Li, Meng & Fei, Mingfa & Wang, Nan & Huang, Chengming, 2020. "A dissipation-preserving finite element method for nonlinear fractional wave equations on irregular convex domains," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 404-419.
    12. ARAZ, Seda İĞRET, 2020. "Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    13. Li, Jiyong & Wang, Xianfen & Chen, Qianyu & Deng, Shuo, 2024. "Improved uniform error bounds of a Lawson-type exponential wave integrator method for the Klein-Gordon-Dirac equation," Applied Mathematics and Computation, Elsevier, vol. 479(C).
    14. Balankin, Alexander S., 2020. "Fractional space approach to studies of physical phenomena on fractals and in confined low-dimensional systems," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    15. Wang, Yong & Wang, Yunhui & Zhang, Zejia & Sun, Lang & Yang, Rui & Sapnken, Flavian Emmanuel & Xiao, Wenlian, 2025. "A novel fractional-order kernel regularized non-homogeneous grey Riccati model and its application in oil reserves prediction," Energy, Elsevier, vol. 316(C).
    16. Almushaira, Mustafa, 2023. "Efficient energy-preserving eighth-order compact finite difference schemes for the sine-Gordon equation," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    17. Zhang, Pingrui & Jiang, Xiaoyun & Jia, Junqing, 2024. "Improved uniform error estimates for the two-dimensional nonlinear space fractional Dirac equation with small potentials over long-time dynamics," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    18. Li, Jiyong, 2023. "Optimal error estimates of a time-splitting Fourier pseudo-spectral scheme for the Klein–Gordon–Dirac equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 398-423.
    19. Tian, Peibo & Liang, Yingjie, 2022. "Material coordinate driven variable-order fractal derivative model of water anomalous adsorption in swelling soil," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    20. Che, Han & Wang, Yu-Lan & Li, Zhi-Yuan, 2022. "Novel patterns in a class of fractional reaction–diffusion models with the Riesz fractional derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 149-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:233:y:2025:i:c:p:448-474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.