IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v143y2021ics0960077920309590.html
   My bibliography  Save this article

Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials

Author

Listed:
  • Shojaeizadeh, T.
  • Mahmoudi, M.
  • Darehmiraki, M.

Abstract

Optimal control is always intended for optimization of different systems. In this study, new introduced differential operators called fractal-fractional derivatives have been used to investigate the behavior of one of the attractions of applied mathematics in physics and engineering. A novel version of the optimal control problem (OCP) generated using a dynamic system of type space-time fractal-fractional advection-diffusion-reaction equation is provided. An exact method based on the operational matrix derived from shifted Jacobi polynomials (SJPs) and collocation schemes is proposed. To define these new class of problems, the fractal-fractional derivative is implemented in to the Atangana-Riemann-Liouville sense whit Mittag-Leffler kernel applied for the time variable, and the fractional derivatives carried out for the space variable in the Caputo sense and the Atangana-Baleano-Caputo concept. In other words, the proposed method turns the principal problems solution into solving a system of algebraic equations. For this purpose, we substitute the approximate state and control values of the variables obtained by SJPs with unknown coefficients into the objective function, the dynamic system, and the initial and Dirichlet boundary conditions. Eventually, this problem becomes a quadratic optimization problem with linear constraint solved by the Lagrange multipliers method. In addition, the convergence analysis of SJPs expansion has been proved. To assess the effectiveness and precision of the process, some scenarios are illustrated.

Suggested Citation

  • Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
  • Handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309590
    DOI: 10.1016/j.chaos.2020.110568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920309590
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. ARAZ, Seda İĞRET, 2020. "Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    2. Atangana, Abdon & Qureshi, Sania, 2019. "Modeling attractors of chaotic dynamical systems with fractal–fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 320-337.
    3. Atangana, Abdon, 2017. "Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 396-406.
    4. Bahaa, G.M., 2019. "Optimal control problem for variable-order fractional differential systems with time delay involving Atangana–Baleanu derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 129-142.
    5. Karaagac, Berat, 2019. "Two step Adams Bashforth method for time fractional Tricomi equation with non-local and non-singular Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 234-241.
    6. Goswami, Amit & Singh, Jagdev & Kumar, Devendra & Sushila,, 2019. "An efficient analytical approach for fractional equal width equations describing hydro-magnetic waves in cold plasma," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 563-575.
    7. Chen, W., 2006. "Time–space fabric underlying anomalous diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 923-929.
    8. Bhatter, Sanjay & Mathur, Amit & Kumar, Devendra & Singh, Jagdev, 2020. "A new analysis of fractional Drinfeld–Sokolov–Wilson model with exponential memory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Marzban, Hamid Reza, 2022. "A generalization of Müntz-Legendre polynomials and its implementation in optimal control of nonlinear fractional delay systems," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Imran, M.A., 2020. "Application of fractal fractional derivative of power law kernel (FFP0Dxα,β) to MHD viscous fluid flow between two plates," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    3. Zhang, Yonghong & Mao, Shuhua & Kang, Yuxiao & Wen, Jianghui, 2021. "Fractal derivative fractional grey Riccati model and its application," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    4. ARAZ, Seda İĞRET, 2020. "Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    5. Sunil Kumar & Ali Ahmadian & Ranbir Kumar & Devendra Kumar & Jagdev Singh & Dumitru Baleanu & Mehdi Salimi, 2020. "An Efficient Numerical Method for Fractional SIR Epidemic Model of Infectious Disease by Using Bernstein Wavelets," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    6. Qureshi, Sania & Atangana, Abdon, 2020. "Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    7. Shloof, A.M. & Senu, N. & Ahmadian, A. & Salahshour, Soheil, 2021. "An efficient operation matrix method for solving fractal–fractional differential equations with generalized Caputo-type fractional–fractal derivative," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 415-435.
    8. Omaba, McSylvester Ejighikeme, 2021. "Growth moment, stability and asymptotic behaviours of solution to a class of time-fractal-fractional stochastic differential equation," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    10. Jing Chang & Jin Zhang & Ming Cai, 2021. "Series Solutions of High-Dimensional Fractional Differential Equations," Mathematics, MDPI, vol. 9(17), pages 1-21, August.
    11. Sina Etemad & Albert Shikongo & Kolade M. Owolabi & Brahim Tellab & İbrahim Avcı & Shahram Rezapour & Ravi P. Agarwal, 2022. "A New Fractal-Fractional Version of Giving up Smoking Model: Application of Lagrangian Piece-Wise Interpolation along with Asymptotical Stability," Mathematics, MDPI, vol. 10(22), pages 1-31, November.
    12. Li, Zhongfei & Liu, Zhuang & Khan, Muhammad Altaf, 2020. "Fractional investigation of bank data with fractal-fractional Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    13. Akgül, Ali & Siddique, Imran, 2021. "Analysis of MHD Couette flow by fractal-fractional differential operators," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Li, Xiao-Ping & Din, Anwarud & Zeb, Anwar & Kumar, Sunil & Saeed, Tareq, 2022. "The impact of Lévy noise on a stochastic and fractal-fractional Atangana–Baleanu order hepatitis B model under real statistical data," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    15. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. Hari M. Srivastava & Khaled Mohammed Saad & Walid M. Hamanah, 2022. "Certain New Models of the Multi-Space Fractal-Fractional Kuramoto-Sivashinsky and Korteweg-de Vries Equations," Mathematics, MDPI, vol. 10(7), pages 1-13, March.
    17. Sabbar, Yassine & Din, Anwarud & Kiouach, Driss, 2023. "Influence of fractal–fractional differentiation and independent quadratic Lévy jumps on the dynamics of a general epidemic model with vaccination strategy," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    18. Saifullah, Sayed & Ali, Amir & Franc Doungmo Goufo, Emile, 2021. "Investigation of complex behaviour of fractal fractional chaotic attractor with mittag-leffler Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Li, Peiluan & Han, Liqin & Xu, Changjin & Peng, Xueqing & Rahman, Mati ur & Shi, Sairu, 2023. "Dynamical properties of a meminductor chaotic system with fractal–fractional power law operator," Chaos, Solitons & Fractals, Elsevier, vol. 175(P2).
    20. Saad, Khaled M., 2021. "Fractal-fractional Brusselator chemical reaction," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:143:y:2021:i:c:s0960077920309590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.