IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v128y2019icp234-241.html
   My bibliography  Save this article

Two step Adams Bashforth method for time fractional Tricomi equation with non-local and non-singular Kernel

Author

Listed:
  • Karaagac, Berat

Abstract

Recently, Atangana and Baleanu (AB) introduced a new fractional differentiation concept using non-local and non-singular kernel. Later on, theoretical applications, more practical applications and new numerical methods was established for solving partial differential equations in the meaning of AB derivative. In this study, the new numerical scheme was formulated by Owolabi and Atangana [A. Atangana, K.M.Owolabi, New numerical approach for fractional differential equations. Mathematical Modelling of Natural Phenomena 13.1 (2018) 1–19.] is considered for solving fractional Tricomi equation which involves the Mittag- Leffler kernel. A novel two-step Adams-Bashforth scheme is applied for the approximation of the AB fractional derivative. Stability of the numerical scheme is examined with the help of von Neumann stability analysis and induction principle. To test the applicability and suitability of the proposed method, two notable examples are considered with numerical results presented for some fractional order values.

Suggested Citation

  • Karaagac, Berat, 2019. "Two step Adams Bashforth method for time fractional Tricomi equation with non-local and non-singular Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 234-241.
  • Handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:234-241
    DOI: 10.1016/j.chaos.2019.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919303170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    2. Owolabi, Kolade M., 2018. "Numerical patterns in system of integer and non-integer order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 143-153.
    3. Yadav, Swati & Pandey, Rajesh K. & Shukla, Anil K., 2019. "Numerical approximations of Atangana–Baleanu Caputo derivative and its application," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 58-64.
    4. Karaagac, Berat, 2019. "A study on fractional Klein Gordon equation with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 218-229.
    5. Owolabi, Kolade M., 2018. "Analysis and numerical simulation of multicomponent system with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 127-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shojaeizadeh, T. & Mahmoudi, M. & Darehmiraki, M., 2021. "Optimal control problem of advection-diffusion-reaction equation of kind fractal-fractional applying shifted Jacobi polynomials," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    2. Rayal, Ashish & Ram Verma, Sag, 2020. "Numerical analysis of pantograph differential equation of the stretched type associated with fractal-fractional derivatives via fractional order Legendre wavelets," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    2. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Computational study of multi-species fractional reaction-diffusion system with ABC operator," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 280-289.
    3. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Karaagac, Berat, 2019. "A study on fractional Klein Gordon equation with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 218-229.
    5. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    6. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    7. Morales-Delgado, V.F. & Gómez-Aguilar, J.F. & Saad, Khaled M. & Khan, Muhammad Altaf & Agarwal, P., 2019. "Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 48-65.
    8. Goufo, Emile F. Doungmo & Khumalo, M & Toudjeu, Ignace Tchangou & Yildirim, Ahmet, 2020. "Mathematical application of a non-local operator in language evolutionary theory," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    9. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    10. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Chaotic and spatiotemporal oscillations in fractional reaction-diffusion system," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    11. Abdeljawad, Thabet & Atangana, Abdon & Gómez-Aguilar, J.F. & Jarad, Fahd, 2019. "On a more general fractional integration by parts formulae and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    12. Owolabi, Kolade M., 2019. "Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 89-101.
    13. Ravichandran, C. & Logeswari, K. & Jarad, Fahd, 2019. "New results on existence in the framework of Atangana–Baleanu derivative for fractional integro-differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 194-200.
    14. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    15. Hamid, Muhammad & Usman, Muhammad & Yan, Yaping & Tian, Zhenfu, 2023. "A computational numerical algorithm for thermal characterization of fractional unsteady free convection flow in an open cavity," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Yadav, Swati & Pandey, Rajesh K., 2020. "Numerical approximation of fractional burgers equation with Atangana–Baleanu derivative in Caputo sense," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    17. Ullah, Malik Zaka & Mallawi, Fouad & Baleanu, Dumitru & Alshomrani, Ali Saleh, 2020. "A new fractional study on the chaotic vibration and state-feedback control of a nonlinear suspension system," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    18. Logeswari, K. & Ravichandran, C., 2020. "A new exploration on existence of fractional neutral integro- differential equations in the concept of Atangana–Baleanu derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 544(C).
    19. Owolabi, Kolade M. & Hammouch, Zakia, 2019. "Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1072-1090.
    20. Owolabi, Kolade M. & Gómez-Aguilar, J.F. & Karaagac, Berat, 2019. "Modelling, analysis and simulations of some chaotic systems using derivative with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 54-63.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:128:y:2019:i:c:p:234-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.