IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v131y2020ics0960077919304928.html
   My bibliography  Save this article

Mathematical application of a non-local operator in language evolutionary theory

Author

Listed:
  • Goufo, Emile F. Doungmo
  • Khumalo, M
  • Toudjeu, Ignace Tchangou
  • Yildirim, Ahmet

Abstract

Many natural processes where an object/organism can make copies of itself or mutate to another similar object/organism are widely used in applied sciences such as mathematical modeling, population genetics or models of language evolutionary dynamic. The latter process remains complex with an impressive and unpredictable behavior that has never stopped changing over the time. In this paper, we make use of model combination of a non-local operator, its derivative order and the learning accuracy in a population language dynamic to indicate mathematical means of hastening the occurrence of more unpredictable trajectories in the system. We prove that those trajectories do form bifurcations that lead to an eventual chaotic process in the dynamic of language with learning for a chosen population with five languages. The model is investigated principally with the help of approximation method followed by its stability and convergence analysis. Numerical simulations show bifurcation diagrams that reveal a kind of symmetry in the evolution process of the frequency towards chaos. The evolution is done versus the mutation parameter as it increases. However, other simulations in the form of section’s projections of the cascade diagram show a dynamic characterized by more chaotic trajectories as both the learning accuracy and the derivative order decrease. This result unfolds another great feature of non-local operators with possible impact in control theory.

Suggested Citation

  • Goufo, Emile F. Doungmo & Khumalo, M & Toudjeu, Ignace Tchangou & Yildirim, Ahmet, 2020. "Mathematical application of a non-local operator in language evolutionary theory," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
  • Handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304928
    DOI: 10.1016/j.chaos.2019.109541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919304928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.109541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Owolabi, Kolade M., 2018. "Numerical patterns in reaction–diffusion system with the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 160-169.
    2. Owolabi, Kolade M., 2018. "Numerical patterns in system of integer and non-integer order derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 143-153.
    3. Atangana, Abdon, 2018. "Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 688-706.
    4. Owolabi, Kolade M., 2018. "Analysis and numerical simulation of multicomponent system with Atangana–Baleanu fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 127-134.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zúñiga-Aguilar, C.J. & Gómez-Aguilar, J.F. & Escobar-Jiménez, R.F. & Romero-Ugalde, H.M., 2019. "A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 266-282.
    2. Owolabi, Kolade M., 2019. "Mathematical modelling and analysis of love dynamics: A fractional approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 849-865.
    3. Morales-Delgado, V.F. & Gómez-Aguilar, J.F. & Saad, Khaled M. & Khan, Muhammad Altaf & Agarwal, P., 2019. "Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: A fractional calculus approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 48-65.
    4. Owolabi, Kolade M. & Karaagac, Berat, 2020. "Dynamics of multi-pulse splitting process in one-dimensional Gray-Scott system with fractional order operator," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Owolabi, Kolade M. & Pindza, Edson, 2019. "Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 146-157.
    6. Karaagac, Berat, 2019. "A study on fractional Klein Gordon equation with non-local and non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 218-229.
    7. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 41-49.
    8. Karaagac, Berat, 2019. "Two step Adams Bashforth method for time fractional Tricomi equation with non-local and non-singular Kernel," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 234-241.
    9. Owolabi, Kolade M. & Atangana, Abdon, 2019. "Computational study of multi-species fractional reaction-diffusion system with ABC operator," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 280-289.
    10. Zeid, Samaneh Soradi, 2019. "Approximation methods for solving fractional equations," Chaos, Solitons & Fractals, Elsevier, vol. 125(C), pages 171-193.
    11. Owolabi, Kolade M. & Hammouch, Zakia, 2019. "Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1072-1090.
    12. Abdeljawad, Thabet & Atangana, Abdon & Gómez-Aguilar, J.F. & Jarad, Fahd, 2019. "On a more general fractional integration by parts formulae and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    13. Owolabi, Kolade M., 2019. "Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 89-101.
    14. Yin, Baoli & Liu, Yang & Li, Hong, 2020. "A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations," Applied Mathematics and Computation, Elsevier, vol. 368(C).
    15. Bandaliyev, R.A. & Ibayev, E.A. & Omarova, K.K., 2021. "Investigation of fractional order differential equation for boundary functional of a semi-Markov random walk process with negative drift and positive jumps," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Solís-Pérez, J.E. & Gómez-Aguilar, J.F. & Atangana, A., 2018. "Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 175-185.
    17. Abro, Kashif Ali & Khan, Ilyas & Nisar, Kottakkaran Sooppy, 2019. "Novel technique of Atangana and Baleanu for heat dissipation in transmission line of electrical circuit," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 40-45.
    18. Chatibi, Y. & El Kinani, E.H. & Ouhadan, A., 2019. "Variational calculus involving nonlocal fractional derivative with Mittag–Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 117-121.
    19. Asifa, & Kumam, Poom & Tassaddiq, Asifa & Watthayu, Wiboonsak & Shah, Zahir & Anwar, Talha, 2022. "Modeling and simulation based investigation of unsteady MHD radiative flow of rate type fluid; a comparative fractional analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 201(C), pages 486-507.
    20. Saad, Khaled M. & Gómez-Aguilar, J.F., 2018. "Analysis of reaction–diffusion system via a new fractional derivative with non-singular kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 703-716.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:131:y:2020:i:c:s0960077919304928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.