A General Conformable Black–Scholes Equation for Option Pricing
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Robert J. Elliott & John Van Der Hoek, 2003. "A General Fractional White Noise Theory And Applications To Finance," Mathematical Finance, Wiley Blackwell, vol. 13(2), pages 301-330, April.
- Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000.
"Fractional calculus and continuous-time finance,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
- Enrico Scalas & Rudolf Gorenflo & Francesco Mainardi, 2000. "Fractional calculus and continuous-time finance," Papers cond-mat/0001120, arXiv.org.
- Enrico Scalas & Rudolf Gorenflo & Francesco Mainardi, 2004. "Fractional calculus and continuous-time finance," Finance 0411007, University Library of Munich, Germany.
- Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
- Rosa, Wanderson & Weberszpil, José, 2018. "Dual conformable derivative: Definition, simple properties and perspectives for applications," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 137-141.
- Lina Song & Weiguo Wang, 2013. "Solution of the Fractional Black‐Scholes Option Pricing Model by Finite Difference Method," Abstract and Applied Analysis, John Wiley & Sons, vol. 2013(1).
- Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007.
"Fractional diffusion models of option prices in markets with jumps,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
- Alvaro Cartea & Diego del-Castillo-Negrete, 2006. "Fractional Diffusion Models of Option Prices in Markets with Jumps," Birkbeck Working Papers in Economics and Finance 0604, Birkbeck, Department of Economics, Mathematics & Statistics.
- Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000.
"Fractional calculus and continuous-time finance II: the waiting-time distribution,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
- Francesco Mainardi & Marco Raberto & Rudolf Gorenflo & Enrico Scalas, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Papers cond-mat/0006454, arXiv.org, revised Nov 2000.
- Francesco Mainardi & Marco Raberto & Rudolf Gorenflo & Enrico Scalas, 2004. "Fractional calculus and continuous-time finance II: the waiting- time distribution," Finance 0411008, University Library of Munich, Germany.
- Lina Song & Weiguo Wang, 2013. "Solution of the Fractional Black-Scholes Option Pricing Model by Finite Difference Method," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-10, June.
- Zhao, Dazhi & Pan, Xueqin & Luo, Maokang, 2018. "A new framework for multivariate general conformable fractional calculus and potential applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 271-280.
- Joy K. Nthiwa & Ananda O. Kube & Cyprian O. Omari & Chen Mengxin, 2023. "A Jump Diffusion Model with Fast Mean-Reverting Stochastic Volatility for Pricing Vulnerable Options," Discrete Dynamics in Nature and Society, Hindawi, vol. 2023, pages 1-7, September.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Longjin, Lv & Ren, Fu-Yao & Qiu, Wei-Yuan, 2010. "The application of fractional derivatives in stochastic models driven by fractional Brownian motion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4809-4818.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Vasily E. Tarasov, 2020. "Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 8(5), pages 1-3, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
- Miccichè, S., 2016. "Understanding the determinants of volatility clustering in terms of stationary Markovian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 186-197.
- Álvaro Cartea, 2013.
"Derivatives pricing with marked point processes using tick-by-tick data,"
Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 111-123, January.
- Cartea, Álvaro, 2010. "Derivatives pricing with marked point processes using Tick-by-tick data," DEE - Working Papers. Business Economics. WB wb101604, Universidad Carlos III de Madrid. Departamento de EconomÃa de la Empresa.
- Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
- Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
- G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
- Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
- Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
- Xiao, Wei-Lin & Zhang, Wei-Guo & Zhang, Xili & Zhang, Xiaoli, 2012. "Pricing model for equity warrants in a mixed fractional Brownian environment and its algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(24), pages 6418-6431.
- Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Logistic map with memory from economic model," Papers 1712.09092, arXiv.org.
- Tarasov, Vasily E. & Tarasova, Valentina V., 2018. "Macroeconomic models with long dynamic memory: Fractional calculus approach," Applied Mathematics and Computation, Elsevier, vol. 338(C), pages 466-486.
- Francesco Mainardi, 2020. "On the Advent of Fractional Calculus in Econophysics via Continuous-Time Random Walk," Mathematics, MDPI, vol. 8(4), pages 1-9, April.
- Vasily E. Tarasov & Valentina V. Tarasova, 2019. "Dynamic Keynesian Model of Economic Growth with Memory and Lag," Mathematics, MDPI, vol. 7(2), pages 1-17, February.
- Torricelli, Lorenzo, 2020. "Trade duration risk in subdiffusive financial models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
- Jajarmi, Amin & Hajipour, Mojtaba & Baleanu, Dumitru, 2017. "New aspects of the adaptive synchronization and hyperchaos suppression of a financial model," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 285-296.
- Tomas Skovranek, 2019. "The Mittag-Leffler Fitting of the Phillips Curve," Mathematics, MDPI, vol. 7(7), pages 1-11, July.
- Valentina V. Tarasova & Vasily E. Tarasov, 2017. "Concept of dynamic memory in economics," Papers 1712.09088, arXiv.org.
- Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
- Repetowicz, Przemysław & Richmond, Peter, 2004. "Modeling of waiting times and price changes in currency exchange data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 677-693.
- Valentina V. Tarasova & Vasily E. Tarasov, 2016. "Fractional Dynamics of Natural Growth and Memory Effect in Economics," Papers 1612.09060, arXiv.org, revised Jan 2017.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1576-:d:1653095. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.