IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v62y2023i1d10.1007_s10614-022-10277-z.html
   My bibliography  Save this article

Exploring Uncertainty, Sensitivity and Robust Solutions in Mathematical Programming Through Bayesian Analysis

Author

Listed:
  • Mike G. Tsionas

    (Lancaster University Management School)

  • Dionisis Philippas

    (ESSCA School of Management)

  • Constantin Zopounidis

    (Technical University of Crete
    Audencia Business School)

Abstract

The paper examines the effect of uncertainty on the solution of mathematical programming problems, using Bayesian techniques. We show that the statistical inference of the unknown parameter lies in the solution vector itself. Uncertainty in the data is modeled using sampling models induced by constraints. In this context, the objective is used as prior, and the posterior is efficiently applied via Monte Carlo methods. The proposed techniques provide a new benchmark for robust solutions that are designed without solving mathematical programming problems. We illustrate the benefits of a problem with known solutions and their properties, while discussing the empirical aspects in a real-world portfolio selection problem.

Suggested Citation

  • Mike G. Tsionas & Dionisis Philippas & Constantin Zopounidis, 2023. "Exploring Uncertainty, Sensitivity and Robust Solutions in Mathematical Programming Through Bayesian Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 205-227, June.
  • Handle: RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10277-z
    DOI: 10.1007/s10614-022-10277-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-022-10277-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-022-10277-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    2. Shapiro, Alexander & Tekaya, Wajdi & da Costa, Joari Paulo & Soares, Murilo Pereira, 2013. "Risk neutral and risk averse Stochastic Dual Dynamic Programming method," European Journal of Operational Research, Elsevier, vol. 224(2), pages 375-391.
    3. Uhan, Nelson A., 2015. "Stochastic linear programming games with concave preferences," European Journal of Operational Research, Elsevier, vol. 243(2), pages 637-646.
    4. Castro, Jordi, 2009. "A stochastic programming approach to cash management in banking," European Journal of Operational Research, Elsevier, vol. 192(3), pages 963-974, February.
    5. John Geweke, 1999. "Using simulation methods for bayesian econometric models: inference, development,and communication," Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
    6. Sakalauskas, Leonidas L., 2002. "Nonlinear stochastic programming by Monte-Carlo estimators," European Journal of Operational Research, Elsevier, vol. 137(3), pages 558-573, March.
    7. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    8. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    9. John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
    10. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    11. K Darby-Dowman & S Barker & E Audsley & D Parsons, 2000. "A two-stage stochastic programming with recourse model for determining robust planting plans in horticulture," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(1), pages 83-89, January.
    12. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    13. Philpott, A.B. & de Matos, V.L., 2012. "Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion," European Journal of Operational Research, Elsevier, vol. 218(2), pages 470-483.
    14. Pichler, Alois & Tomasgard, Asgeir, 2016. "Nonlinear stochastic programming–With a case study in continuous switching," European Journal of Operational Research, Elsevier, vol. 252(2), pages 487-501.
    15. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    16. Korhonen, Pekka & Yu, GuangYuan, 1998. "On computing objective function values in multiple objective quadratic-linear programming," European Journal of Operational Research, Elsevier, vol. 106(1), pages 184-190, April.
    17. M Jackson & M D Staunton, 1999. "Quadratic programming applications in finance using Excel," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(12), pages 1256-1266, December.
    18. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    19. Mulvey, John M. & Erkan, Hafize G., 2006. "Applying CVaR for decentralized risk management of financial companies," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 627-644, February.
    20. Suvrajeet Sen & Julia L. Higle, 1999. "An Introductory Tutorial on Stochastic Linear Programming Models," Interfaces, INFORMS, vol. 29(2), pages 33-61, April.
    21. A. Charnes & W. W. Cooper, 1963. "Deterministic Equivalents for Optimizing and Satisficing under Chance Constraints," Operations Research, INFORMS, vol. 11(1), pages 18-39, February.
    22. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    23. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    24. Claudia D’Ambrosio & Andrea Lodi, 2013. "Mixed integer nonlinear programming tools: an updated practical overview," Annals of Operations Research, Springer, vol. 204(1), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    2. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    3. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    4. Massol, Olivier & Banal-Estañol, Albert, 2014. "Export diversification through resource-based industrialization: The case of natural gas," European Journal of Operational Research, Elsevier, vol. 237(3), pages 1067-1082.
    5. W. Ackooij & X. Warin, 2020. "On conditional cuts for stochastic dual dynamic programming," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 173-199, June.
    6. Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
    7. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    8. Philipp Baumann & Norbert Trautmann, 2013. "Portfolio-optimization models for small investors," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 77(3), pages 345-356, June.
    9. Vanita Garg & Kusum Deep, 2019. "Portfolio optimization using Laplacian biogeography based optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 56(4), pages 1117-1141, December.
    10. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    11. Bushaj, Sabah & Büyüktahtakın, İ. Esra & Haight, Robert G., 2022. "Risk-averse multi-stage stochastic optimization for surveillance and operations planning of a forest insect infestation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1094-1110.
    12. Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
    13. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    14. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    15. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    16. Todor Stoilov & Krasimira Stoilova & Miroslav Vladimirov, 2021. "Explicit Value at Risk Goal Function in Bi-Level Portfolio Problem for Financial Sustainability," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    17. Li, Ping & Han, Yingwei & Xia, Yong, 2016. "Portfolio optimization using asymmetry robust mean absolute deviation model," Finance Research Letters, Elsevier, vol. 18(C), pages 353-362.
    18. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2018. "Generalized Bounded Rationality and Robust Multicommodity Network Design," Operations Research, INFORMS, vol. 66(1), pages 42-57, 1-2.
    19. Andre Luiz Diniz & Maria Elvira P. Maceira & Cesar Luis V. Vasconcellos & Debora Dias J. Penna, 2020. "A combined SDDP/Benders decomposition approach with a risk-averse surface concept for reservoir operation in long term power generation planning," Annals of Operations Research, Springer, vol. 292(2), pages 649-681, September.
    20. Wim Ackooij & Welington Oliveira & Yongjia Song, 2019. "On level regularization with normal solutions in decomposition methods for multistage stochastic programming problems," Computational Optimization and Applications, Springer, vol. 74(1), pages 1-42, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10277-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.