IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v28y2006i2p113-137.html
   My bibliography  Save this article

The Impact of Short-Sale Constraints on Asset Allocation Strategies via the Backward Markov Chain Approximation Method

Author

Listed:
  • Carl Chiarella
  • Chih-Ying Hsiao

Abstract

This paper considers an asset allocation strategy over a finite period under investment uncertainty and short-sale constraints as a continuous time stochastic control problem. Investment uncertainty is characterised by a stochastic interest rate and inflation risk. If there are no short-sale constraints, the optimal asset allocation strategy can be solved analytically. We consider several kinds of short-sale constraints and employ the backward Markov chain approximation method to explore the impact of short-sale constraints on asset allocation decisions. Our results show that the short-sale constraints do indeed have a significant impact on the asset allocation decisions.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Carl Chiarella & Chih-Ying Hsiao, 2006. "The Impact of Short-Sale Constraints on Asset Allocation Strategies via the Backward Markov Chain Approximation Method," Computational Economics, Springer;Society for Computational Economics, vol. 28(2), pages 113-137, September.
  • Handle: RePEc:kap:compec:v:28:y:2006:i:2:p:113-137
    DOI: 10.1007/s10614-006-9036-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-006-9036-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-006-9036-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tapiero, Charles S & Sulem, Agnes, 1994. "Computational Aspects in Applied Stochastic Control," Computational Economics, Springer;Society for Computational Economics, vol. 7(2), pages 109-146.
    2. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    3. Michael J. Brennan & Yihong Xia, 2002. "Dynamic Asset Allocation under Inflation," Journal of Finance, American Finance Association, vol. 57(3), pages 1201-1238, June.
    4. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    5. Robert Jarrow & Yildiray Yildirim, 2008. "Pricing Treasury Inflation Protected Securities and Related Derivatives using an HJM Model," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 16, pages 349-370, World Scientific Publishing Co. Pte. Ltd..
    6. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    7. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Munk, Claus & Sorensen, Carsten, 2004. "Optimal consumption and investment strategies with stochastic interest rates," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1987-2013, August.
    2. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    3. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    4. Carl Chiarella & Willi Semmler & Chih-Ying Hsiao & Lebogang Mateane, 2016. "Asset Accumulation and Portfolio Decisions Under Inflation Risk," Dynamic Modeling and Econometrics in Economics and Finance, in: Sustainable Asset Accumulation and Dynamic Portfolio Decisions, chapter 0, pages 139-177, Springer.
    5. Carl Chiarella & Chih-Ying Hsiao & Willi Semmler, 2007. "Intertemporal Investment Strategies Under Inflation Risk," Research Paper Series 192, Quantitative Finance Research Centre, University of Technology, Sydney.
    6. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    7. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    8. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    9. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    10. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    11. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    12. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    13. Horváth, Ferenc, 2017. "Essays on robust asset pricing," Other publications TiSEM e54d7b33-1f27-4b0e-9f84-f, Tilburg University, School of Economics and Management.
    14. Castaneda, Pablo & Rudolph, Heinz P., 2011. "Upgrading investment regulations in second pillar pension systems : a proposal for Colombia," Policy Research Working Paper Series 5775, The World Bank.
    15. Farid Mkaouar & Jean-Luc Prigent & Ilyes Abid, 2019. "A Diffusion Model for Long-Term Optimization in the Presence of Stochastic Interest and Inflation Rates," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 367-417, June.
    16. Ahmad Telfah, "undated". "Strategic Asset Allocation in Stochastic Environment And Incomplete Markets: Evidence on Horizon And Hedging Effects," API-Working Paper Series 0603, Arab Planning Institute - Kuwait, Information Center.
    17. Munk, Claus & Sorensen, Carsten & Nygaard Vinther, Tina, 2004. "Dynamic asset allocation under mean-reverting returns, stochastic interest rates, and inflation uncertainty: Are popular recommendations consistent with rational behavior?," International Review of Economics & Finance, Elsevier, vol. 13(2), pages 141-166.
    18. Guiyuan Ma & Song-Ping Zhu, 2022. "Revisiting the Merton Problem: from HARA to CARA Utility," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 651-686, February.
    19. Romain Deguest & Lionel Martellini & Vincent Milhau, 2018. "A Reinterpretation of the Optimal Demand for Risky Assets in Fund Separation Theorems," Management Science, INFORMS, vol. 64(9), pages 4333-4347, September.
    20. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:28:y:2006:i:2:p:113-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.