IDEAS home Printed from https://ideas.repec.org/a/jns/jbstat/v231y2011i5-6p733-748.html
   My bibliography  Save this article

Difficulties Detecting Fraud? The Use of Benford’s Law on Regression Tables

Author

Listed:
  • Bauer Johannes

    (Ludwig-Maximilians-Universität München, Institut für Soziologie Konradstr. 6, 80539 München, Germany)

  • Groß Jochen

    (Senior Quantitative Consultant, Roland Berger Strategy Consultants Holding GmbH, Mies-van-der-Rohe-Str. 6, 80807 München, Germany)

Abstract

The occurrence of scientific fraud damages the credibility of science. An instrument to discover deceit was proposed with Benford’s law, a distribution which describes the probability of significant digits in many empirical observations. If Benford-distributed digits are expected and empirical observations deviate from this law, the difference yields evidence for fraud.

Suggested Citation

  • Bauer Johannes & Groß Jochen, 2011. "Difficulties Detecting Fraud? The Use of Benford’s Law on Regression Tables," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(5-6), pages 733-748, October.
  • Handle: RePEc:jns:jbstat:v:231:y:2011:i:5-6:p:733-748
    DOI: 10.1515/jbnst-2011-5-611
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbnst-2011-5-611
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jbnst-2011-5-611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karl-Heinz Tödter, 2009. "Benford's Law as an Indicator of Fraud in Economics," German Economic Review, Verein für Socialpolitik, vol. 10, pages 339-351, August.
    2. David Giles, 2007. "Benford's law and naturally occurring prices in certain ebaY auctions," Applied Economics Letters, Taylor & Francis Journals, vol. 14(3), pages 157-161.
    3. Andreas Diekmann, 2005. "Not the First Digit! Using Benford’s Law to Detect Fraudulent Scientific Data," Others 0507001, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horton, Joanne & Krishna Kumar, Dhanya & Wood, Anthony, 2020. "Detecting academic fraud using Benford law: The case of Professor James Hunton," Research Policy, Elsevier, vol. 49(8).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schräpler Jörg-Peter, 2011. "Benford’s Law as an Instrument for Fraud Detection in Surveys Using the Data of the Socio-Economic Panel (SOEP)," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(5-6), pages 685-718, October.
    2. Kundt, Thorben, 2014. "Applying “Benford’s law” to the Crosswise Model: Findings from an online survey on tax evasion," Working Paper 148/2014, Helmut Schmidt University, Hamburg.
    3. Kalaichelvan, Mohandass & Lim Kai Jie, Shawn, 2012. "A Critical Evaluation of the Significance of Round Numbers in European Equity Markets in Light of the Predictions from Benford’s Law," MPRA Paper 40960, University Library of Munich, Germany.
    4. Lee, Joanne & Cho, Wendy K. Tam & Judge, George G., 2010. "Stigler's approach to recovering the distribution of first significant digits in natural data sets," Statistics & Probability Letters, Elsevier, vol. 80(2), pages 82-88, January.
    5. Stenfors, Alexis, 2018. "Bid-ask spread determination in the FX swap market: Competition, collusion or a convention?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 78-97.
    6. Ausloos, Marcel & Cerqueti, Roy & Mir, Tariq A., 2017. "Data science for assessing possible tax income manipulation: The case of Italy," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 238-256.
    7. Holz, Carsten A., 2014. "The quality of China's GDP statistics," China Economic Review, Elsevier, vol. 30(C), pages 309-338.
    8. Mir, T.A., 2014. "The Benford law behavior of the religious activity data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 1-9.
    9. T. A. Mir, 2016. "The leading digit distribution of the worldwide illicit financial flows," Quality & Quantity: International Journal of Methodology, Springer, vol. 50(1), pages 271-281, January.
    10. Rosa Abrantes-Metz & Sofia Villas-Boas & George Judge, 2011. "Tracking the Libor rate," Applied Economics Letters, Taylor & Francis Journals, vol. 18(10), pages 893-899.
    11. Cerqueti, Roy & Maggi, Mario, 2021. "Data validity and statistical conformity with Benford’s Law," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    12. Brähler, Gernot & Bensmann, Markus & Emke, Anna-Lena, 2010. "Der Einsatz mathematisch-statistischer Methoden in der digitalen Betriebsprüfung," Ilmenauer Schriften zur Betriebswirtschaftslehre, Technische Universität Ilmenau, Institut für Betriebswirtschaftslehre, volume 4, number 42010.
    13. Vadim S. Balashov & Yuxing Yan & Xiaodi Zhu, 2020. "Who Manipulates Data During Pandemics? Evidence from Newcomb-Benford Law," Papers 2007.14841, arXiv.org, revised Jan 2021.
    14. Karen J. Schroeder & Angela Hoffmann & Jens‐Peter Loy, 2016. "The Distribution of Food Retail Prices and the Euro Changeover: Signpost Items Versus Occasional Goods," Agribusiness, John Wiley & Sons, Ltd., vol. 32(1), pages 93-112, January.
    15. Karl-Heinz Tödter, 2009. "Benford's Law as an Indicator of Fraud in Economics," German Economic Review, Verein für Socialpolitik, vol. 10, pages 339-351, August.
    16. Ramesh Chandra Das & Chandra Sekhar Mishra & Prabina Rajib, 2017. "Detection of Anomalies in Accounting Data Using Benford¡¯s Law: Evidence from India," Journal of Social Science Studies, Macrothink Institute, vol. 4(1), pages 123-139, January.
    17. Matthew A. Cole & David J. Maddison & Liyun Zhang, 2020. "Testing the emission reduction claims of CDM projects using the Benford’s Law," Climatic Change, Springer, vol. 160(3), pages 407-426, June.
    18. David E. A. Giles, 2006. "The Exact Asymptotic Distribution Function of Watson's UN-Squared for Testing Goodness-of-Fit With Circular Discrete Data," Econometrics Working Papers 0607, Department of Economics, University of Victoria.
    19. Ocean Fan Lu & David Giles, 2010. "Benford's Law and psychological barriers in certain eBay auctions," Applied Economics Letters, Taylor & Francis Journals, vol. 17(10), pages 1005-1008.
    20. Bormashenko, Ed. & Shulzinger, E. & Whyman, G. & Bormashenko, Ye., 2016. "Benford’s law, its applicability and breakdown in the IR spectra of polymers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 524-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jns:jbstat:v:231:y:2011:i:5-6:p:733-748. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.