IDEAS home Printed from https://ideas.repec.org/a/jas/jasssj/2015-7-5.html
   My bibliography  Save this article

"Anarchy" Reigns: A Quantitative Analysis of Agent-Based Modelling Publication Practices in JASSS, 2001-2012

Author

Abstract

Agent Based Modelling (ABM), a promising scientific toolset, has received criticism from some, in part, due to a claimed lack of scientific rigour, especially in the communication of its methods and results. To test the veracity of these claims, we conduct a structured analysis of over 900 scientific objects (figures, tables, or equations) that arose from 128 ABM papers published in the Journal of Artificial Societies and Social Simulation (JASSS), during the period 2001 to 2012 inclusive. Regrettably, we find considerable evidence in support of the detractors of ABM as a scientific enterprise: elementary plotting attributes are left off more often than not; basic information such as the number of replicates or the basis behind a particular statistic are not included; and few, if any, established methodological communication standards are apparent. In short, 'anarchy reigns'. Whilst the study was confined only to ABM papers of JASSS, we conclude that if the ABM community wishes its approach to be accepted further afield, authors, reviewers, and editors should take the results of our work as a wake-up call.

Suggested Citation

  • Simon Angus & Behrooz Hassani-Mahmooei, 2015. ""Anarchy" Reigns: A Quantitative Analysis of Agent-Based Modelling Publication Practices in JASSS, 2001-2012," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 18(4), pages 1-16.
  • Handle: RePEc:jas:jasssj:2015-7-5
    as

    Download full text from publisher

    File URL: https://www.jasss.org/18/4/16/16.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Buchanan, 2009. "Economics: Meltdown modelling," Nature, Nature, vol. 460(7256), pages 680-682, August.
    2. Nigel Gilbert & Pietro Terna, 2000. "How to build and use agent-based models in social science," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 1(1), pages 57-72, March.
    3. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    4. Jean-Philippe Bouchaud, 2008. "Economics needs a scientific revolution," Nature, Nature, vol. 455(7217), pages 1181-1181, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hepburn, Cameron & Mealy, Penny, 2017. "Transformational Change: Parallels for addressing climate and development goals," INET Oxford Working Papers 2019-02, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford, revised May 2019.
    2. John C. Stevenson, 2021. "Population and Inequality Dynamics in Simple Economies," Papers 2101.09817, arXiv.org, revised Aug 2021.
    3. Lee, Ju-Sung & Filatova, Tatiana & Ligmann-Zielinska, Arika & Hassani-Mahmooei, Behrooz & Stonedahl, Forrest & Lorscheid, Iris & Voinov, Alexey & Polhill, J. Gareth & Sun, Zhanli & Parker, Dawn C., 2015. "The complexities of agent-based modeling output analysis," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 18(4).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Q. & Nguyen, N.K. K. & Nguyen, L.H. N., 2019. "Dynamic topology and allometric scaling behavior on the Vietnamese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 235-243.
    2. Huang, Chuangxia & Deng, Yunke & Yang, Xiaoguang & Cao, Jinde & Yang, Xin, 2021. "A network perspective of comovement and structural change: Evidence from the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 76(C).
    3. Stein, Julian Alexander Cornelius & Braun, Dieter, 2019. "Stability of a time-homogeneous system of money and antimoney in an agent-based random economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 232-249.
    4. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.
    5. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    6. Yerali Gandica & Marco Valerio Geraci & Sophie Béreau & Jean-Yves Gnabo, 2018. "Fragmentation, integration and macroprudential surveillance of the US financial industry: Insights from network science," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-23, April.
    7. Ciarli, Tommaso & Valente, Marco, 2016. "The complex interactions between economic growth and market concentration in a model of structural change," Structural Change and Economic Dynamics, Elsevier, vol. 38(C), pages 38-54.
    8. Tommaso Ciarli & André Lorentz & Marco Valente & Maria Savona, 2019. "Structural changes and growth regimes," Journal of Evolutionary Economics, Springer, vol. 29(1), pages 119-176, March.
    9. Poledna, Sebastian & Thurner, Stefan & Farmer, J. Doyne & Geanakoplos, John, 2014. "Leverage-induced systemic risk under Basle II and other credit risk policies," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 199-212.
    10. Gerard Ballot & Antoine Mandel & Annick Vignes, 2015. "Agent-based modeling and economic theory: where do we stand?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 10(2), pages 199-220, October.
    11. Aur'elien Hazan, 2016. "Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model," Papers 1601.00822, arXiv.org, revised Jan 2017.
    12. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    13. Yong Tao, 2016. "Spontaneous economic order," Journal of Evolutionary Economics, Springer, vol. 26(3), pages 467-500, July.
    14. Chuangxia Huang & Xian Zhao & Renli Su & Xiaoguang Yang & Xin Yang, 2022. "Dynamic network topology and market performance: A case of the Chinese stock market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1962-1978, April.
    15. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: I. Empirical facts," Post-Print hal-00621058, HAL.
    16. Gianluca Fabiani & Nikolaos Evangelou & Tianqi Cui & Juan M. Bello-Rivas & Cristina P. Martin-Linares & Constantinos Siettos & Ioannis G. Kevrekidis, 2024. "Task-oriented machine learning surrogates for tipping points of agent-based models," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Andrew Hoegh & Frank T. Manen & Mark Haroldson, 2021. "Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(4), pages 560-579, December.
    18. Hazan, Aurélien, 2017. "Volume of the steady-state space of financial flows in a monetary stock-flow-consistent model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 589-602.
    19. Vygintas Gontis & Aleksejus Kononovicius, 2014. "Consentaneous Agent-Based and Stochastic Model of the Financial Markets," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-12, July.
    20. Sylvain Mignot & Annick Vignes, 2020. "The Many Faces of Agent-Based Computational Economics: Ecology of Agents, Bottom-Up Approaches and Paradigm Shift [Les modèles multi-agents en économie, entre agents hétérogènes, approches bottom-u," Post-Print hal-02956172, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jas:jasssj:2015-7-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Francesco Renzini (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.