IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v55y2021i3p768-790.html
   My bibliography  Save this article

Integrated Periodic Timetabling and Vehicle Circulation Scheduling

Author

Listed:
  • Rolf N. Van Lieshout

    (Econometric Institute and Erasmus Center for Optimization in Public Transport, Erasmus University Rotterdam, 3000 DR Rotterdam, Netherlands)

Abstract

Periodic timetabling is one of the most well-researched problems in the public transport optimization literature. However, the impact that timetabling has on the number of required vehicles, which directly translates to operator costs, is rarely considered. Therefore, in this paper, we consider the problem of jointly optimizing the timetable and the vehicle circulation schedule, which specifies the cyclic sequences of trips that vehicles perform. In order to obtain high-quality solutions to realistic instances, we improve an earlier proposed formulation by contraction techniques, three new valid inequalities, and symmetry-breaking constraints. Ultimately, this allows us to explore the trade-off between the number of vehicles and the attractiveness of the timetable from the passengers’ perspective. An extensive computational study demonstrates the effectiveness of the improved formulation. Moreover, using this approach, we are able to find timetables requiring substantially fewer vehicles at the cost of minimal increases of the average travel time of passengers.

Suggested Citation

  • Rolf N. Van Lieshout, 2021. "Integrated Periodic Timetabling and Vehicle Circulation Scheduling," Transportation Science, INFORMS, vol. 55(3), pages 768-790, May.
  • Handle: RePEc:inm:ortrsc:v:55:y:2021:i:3:p:768-790
    DOI: 10.1287/trsc.2020.1024
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2020.1024
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2020.1024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Polinder, G.-J. & Breugem, T. & Dollevoet, T.A.B. & Maróti, G., 2019. "An Adjustable Robust Optimization Approach for Periodic Timetabling," Econometric Institute Research Papers EI2019-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Christian Liebchen & Mark Proksch & Frank H. Wagner, 2008. "Performance of Algorithms for Periodic Timetable Optimization," Lecture Notes in Economics and Mathematical Systems, in: Mark Hickman & Pitu Mirchandani & Stefan Voß (ed.), Computer-aided Systems in Public Transport, pages 151-180, Springer.
    3. Polinder, G.-J. & Breugem, T. & Dollevoet, T.A.B. & Maróti, G., 2019. "An Adjustable Robust Optimization Approach for Periodic Timetabling," Econometric Institute Research Papers EI2019-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Christian Liebchen, 2008. "The First Optimized Railway Timetable in Practice," Transportation Science, INFORMS, vol. 42(4), pages 420-435, November.
    5. Leo Kroon & Dennis Huisman & Erwin Abbink & Pieter-Jan Fioole & Matteo Fischetti & Gábor Maróti & Alexander Schrijver & Adri Steenbeek & Roelof Ybema, 2009. "The New Dutch Timetable: The OR Revolution," Interfaces, INFORMS, vol. 39(1), pages 6-17, February.
    6. Polinder, Gert-Jaap & Breugem, Thomas & Dollevoet, Twan & Maróti, Gábor, 2019. "An adjustable robust optimization approach for periodic timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 50-68.
    7. Mor Kaspi & Tal Raviv, 2013. "Service-Oriented Line Planning and Timetabling for Passenger Trains," Transportation Science, INFORMS, vol. 47(3), pages 295-311, August.
    8. Desfontaines, Lucie & Desaulniers, Guy, 2018. "Multiple depot vehicle scheduling with controlled trip shifting," Transportation Research Part B: Methodological, Elsevier, vol. 113(C), pages 34-53.
    9. Odijk, Michiel A., 1996. "A constraint generation algorithm for the construction of periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 30(6), pages 455-464, December.
    10. Ibarra-Rojas, Omar J. & Giesen, Ricardo & Rios-Solis, Yasmin A., 2014. "An integrated approach for timetabling and vehicle scheduling problems to analyze the trade-off between level of service and operating costs of transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 35-46.
    11. James B. Orlin, 1982. "Minimizing the Number of Vehicles to Meet a Fixed Periodic Schedule: An Application of Periodic Posets," Operations Research, INFORMS, vol. 30(4), pages 760-776, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    2. van Lieshout, Rolf N. & Bouman, Paul C. & van den Akker, Marjan & Huisman, Dennis, 2021. "A self-organizing policy for vehicle dispatching in public transit systems with multiple lines," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 46-64.
    3. Lu, Yahan & Yang, Lixing & Yang, Hai & Zhou, Housheng & Gao, Ziyou, 2023. "Robust collaborative passenger flow control on a congested metro line: A joint optimization with train timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 168(C), pages 27-55.
    4. Zhou, Housheng & Qi, Jianguo & Yang, Lixing & Shi, Jungang & Pan, Hanchuan & Gao, Yuan, 2022. "Joint optimization of train timetabling and rolling stock circulation planning: A novel flexible train composition mode," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 352-385.
    5. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Lieshout, R.N., 2019. "Integrated Periodic Timetabling and Vehicle Circulation Scheduling," Econometric Institute Research Papers EI2019-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Hartleb, Johann & Schmidt, Marie, 2022. "Railway timetabling with integrated passenger distribution," European Journal of Operational Research, Elsevier, vol. 298(3), pages 953-966.
    3. Robenek, Tomáš & Maknoon, Yousef & Azadeh, Shadi Sharif & Chen, Jianghang & Bierlaire, Michel, 2016. "Passenger centric train timetabling problem," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 107-126.
    4. Julius Pätzold, 2021. "Finding robust periodic timetables by integrating delay management," Public Transport, Springer, vol. 13(2), pages 349-374, June.
    5. Zhang, Yongxiang & Peng, Qiyuan & Yao, Yu & Zhang, Xin & Zhou, Xuesong, 2019. "Solving cyclic train timetabling problem through model reformulation: Extended time-space network construct and Alternating Direction Method of Multipliers methods," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 344-379.
    6. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    7. Jozef Gasparik & Milan Dedik & Lukas Cechovic & Peter Blaho, 2020. "Estimation of Transport Potential in Regional Rail Passenger Transport by Using the Innovative Mathematical-Statistical Gravity Approach," Sustainability, MDPI, vol. 12(9), pages 1-13, May.
    8. Zhang, Yongxiang & Peng, Qiyuan & Lu, Gongyuan & Zhong, Qingwei & Yan, Xu & Zhou, Xuesong, 2022. "Integrated line planning and train timetabling through price-based cross-resolution feedback mechanism," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 240-277.
    9. Polinder, Gert-Jaap & Breugem, Thomas & Dollevoet, Twan & Maróti, Gábor, 2019. "An adjustable robust optimization approach for periodic timetabling," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 50-68.
    10. Sparing, Daniel & Goverde, Rob M.P., 2017. "A cycle time optimization model for generating stable periodic railway timetables," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 198-223.
    11. Van Aken, Sander & Bešinović, Nikola & Goverde, Rob M.P., 2017. "Designing alternative railway timetables under infrastructure maintenance possessions," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 224-238.
    12. Polinder, Gert-Jaap & Schmidt, Marie & Huisman, Dennis, 2021. "Timetabling for strategic passenger railway planning," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 111-135.
    13. Kroon, L.G. & Peeters, L.W.P. & Wagenaar, J.C. & Zuidwijk, R.A., 2012. "Flexible Connections in PESP Models for Cyclic Passenger Railway Timetabling," ERIM Report Series Research in Management ERS-2012-008-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    14. Han Zheng & Junhua Chen & Zhaocha Huang & Jianhao Zhu, 2022. "Joint Optimization of Multi-Cycle Timetable Considering Supply-to-Demand Relationship and Energy Consumption for Rail Express," Mathematics, MDPI, vol. 10(21), pages 1-29, November.
    15. Polinder, G.-J. & Cacchiani, V. & Schmidt, M.E. & Huisman, D., 2020. "An iterative heuristic for passenger-centric train timetabling with integrated adaption times," ERIM Report Series Research in Management ERS-2020-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Kang, Liujiang & Meng, Qiang, 2017. "Two-phase decomposition method for the last train departure time choice in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 568-582.
    17. Twan Dollevoet & Dennis Huisman & Marie Schmidt & Anita Schöbel, 2012. "Delay Management with Rerouting of Passengers," Transportation Science, INFORMS, vol. 46(1), pages 74-89, February.
    18. Leo G. Kroon & Leon W. P. Peeters & Joris C. Wagenaar & Rob A. Zuidwijk, 2014. "Flexible Connections in PESP Models for Cyclic Passenger Railway Timetabling," Transportation Science, INFORMS, vol. 48(1), pages 136-154, February.
    19. Kang, Liujiang & Zhu, Xiaoning & Sun, Huijun & Puchinger, Jakob & Ruthmair, Mario & Hu, Bin, 2016. "Modeling the first train timetabling problem with minimal missed trains and synchronization time differences in subway networks," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 17-36.
    20. Polinder, G.-J. & Schmidt, M.E. & Huisman, D., 2020. "Timetabling for strategic passenger railway planning," ERIM Report Series Research in Management ERS-2020-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:55:y:2021:i:3:p:768-790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.