IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i3p509-525.html
   My bibliography  Save this article

Robust Optimization for a Maritime Inventory Routing Problem

Author

Listed:
  • Agostinho Agra

    (Department of Mathematics and Center for Research and Development in Mathematics and Applications, University of Aveiro, 3810-193 Aveiro, Portugal)

  • Marielle Christiansen

    (Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Lars Magnus Hvattum

    (Molde University College, 6402 Molde, Norway)

  • Filipe Rodrigues

    (Department of Mathematics and Center for Research and Development in Mathematics and Applications, University of Aveiro, 3810-193 Aveiro, Portugal)

Abstract

We consider a single product maritime inventory routing problem in which the production and consumption rates are constant over the planning horizon. The problem involves a heterogeneous fleet and multiple production and consumption ports with limited storage capacity. Maritime transportation is characterized by high levels of uncertainty, and sailing times can be severely influenced by varying and unpredictable weather conditions. To deal with the uncertainty, this paper investigates the use of adaptable robust optimization where the sailing times are assumed to belong to the well-known budget polytope uncertainty set. In the recourse model, the routing, the order of port visits, and the quantities to load and unload are fixed before the uncertainty is revealed, while the visit time to ports and the stock levels can be adjusted to the scenario. We propose a decomposition algorithm that iterates between a master problem that considers a subset of scenarios and an adversarial separation problem that searches for scenarios that make the solution from the master problem infeasible. Several improvement strategies are proposed aiming at reducing the running time of the master problem and reducing the number of iterations of the decomposition algorithm. An iterated local search heuristic is also introduced to improve the decomposition algorithm. A computational study is reported based on a set of real instances.

Suggested Citation

  • Agostinho Agra & Marielle Christiansen & Lars Magnus Hvattum & Filipe Rodrigues, 2018. "Robust Optimization for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 52(3), pages 509-525, June.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:3:p:509-525
    DOI: 10.1287/trsc.2017.0814
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0814
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    2. E-H Aghezzaf, 2008. "Robust distribution planning for supplier-managed inventory agreements when demand rates and travel times are stationary," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1055-1065, August.
    3. Papageorgiou, Dimitri J. & Nemhauser, George L. & Sokol, Joel & Cheon, Myun-Seok & Keha, Ahmet B., 2014. "MIRPLib – A library of maritime inventory routing problem instances: Survey, core model, and benchmark results," European Journal of Operational Research, Elsevier, vol. 235(2), pages 350-366.
    4. AGRA, Agostinho & ANDERSSON, Henrik & CHRISTIANSEN, Marielle & WOLSEY, Laurence A., 2013. "A maritime inventory routing problem: discrete time formulations and valid inequalities," LIDAM Reprints CORE 2584, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    6. Guy Desaulniers & Jørgen G. Rakke & Leandro C. Coelho, 2016. "A Branch-Price-and-Cut Algorithm for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 50(3), pages 1060-1076, August.
    7. Marielle Christiansen & Bjørn Nygreen, 2005. "Robust Inventory Ship Routing by Column Generation," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 197-224, Springer.
    8. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    9. Yossiri Adulyasak & Patrick Jaillet, 2016. "Models and Algorithms for Stochastic and Robust Vehicle Routing with Deadlines," Transportation Science, INFORMS, vol. 50(2), pages 608-626, May.
    10. Alper Atamtürk & Muhong Zhang, 2007. "Two-Stage Robust Network Flow and Design Under Demand Uncertainty," Operations Research, INFORMS, vol. 55(4), pages 662-673, August.
    11. Christiansen, Marielle & Fagerholt, Kjetil & Nygreen, Bjørn & Ronen, David, 2013. "Ship routing and scheduling in the new millennium," European Journal of Operational Research, Elsevier, vol. 228(3), pages 467-483.
    12. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    13. Li, Ming & Wang, Zheng & Chan, Felix T.S., 2016. "A robust inventory routing policy under inventory inaccuracy and replenishment lead-time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 290-305.
    14. Jørgen Glomvik Rakke & Henrik Andersson & Marielle Christiansen & Guy Desaulniers, 2015. "A New Formulation Based on Customer Delivery Patterns for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 384-401, May.
    15. Francesca Maggioni & Florian A. Potra & Marida Bertocchi, 2017. "A scenario-based framework for supply planning under uncertainty: stochastic programming versus robust optimization approaches," Computational Management Science, Springer, vol. 14(1), pages 5-44, January.
    16. Agostinho Agra & Marielle Christiansen & Alexandrino Delgado, 2013. "Mixed Integer Formulations for a Short Sea Fuel Oil Distribution Problem," Transportation Science, INFORMS, vol. 47(1), pages 108-124, February.
    17. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    18. Russell, Robert A., 2017. "Mathematical programming heuristics for the production routing problem," International Journal of Production Economics, Elsevier, vol. 193(C), pages 40-49.
    19. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    20. Marielle Christiansen & Kjetil Fagerholt, 2002. "Robust ship scheduling with multiple time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 611-625, September.
    21. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2012. "Robust Inventory Routing Under Demand Uncertainty," Transportation Science, INFORMS, vol. 46(3), pages 327-340, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ksciuk, Jana & Kuhlemann, Stefan & Tierney, Kevin & Koberstein, Achim, 2023. "Uncertainty in maritime ship routing and scheduling: A Literature review," European Journal of Operational Research, Elsevier, vol. 308(2), pages 499-524.
    2. Agra, Agostinho & Rodrigues, Filipe, 2022. "Distributionally robust optimization for the berth allocation problem under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 1-24.
    3. Abdalrahman Algendi & Sebastián Urrutia & Lars Magnus Hvattum, 2023. "Optimizing production levels in maritime inventory routing with load-dependent speed optimization," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 111-141, March.
    4. Kosuke Kawakami & Hirokazu Kobayashi & Kazuhide Nakata, 2021. "Seasonal Inventory Management Model for Raw Materials in Steel Industry," Interfaces, INFORMS, vol. 51(4), pages 312-324, July.
    5. Raa, Birger & Aouam, Tarik, 2021. "Multi-vehicle stochastic cyclic inventory routing with guaranteed replenishments," International Journal of Production Economics, Elsevier, vol. 234(C).
    6. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    7. Rodrigues, Filipe & Agra, Agostinho, 2021. "An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times," European Journal of Operational Research, Elsevier, vol. 295(2), pages 499-516.
    8. Saijun Shao & Kin Keung Lai & Biyun Ge, 2023. "A multi-period inventory routing problem with procurement decisions: a case in China," Annals of Operations Research, Springer, vol. 324(1), pages 1527-1555, May.
    9. Ghiami, Yousef & Demir, Emrah & Van Woensel, Tom & Christiansen, Marielle & Laporte, Gilbert, 2019. "A deteriorating inventory routing problem for an inland liquefied natural gas distribution network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 45-67.
    10. Gustavo Souto dos Santos Diz & Silvio Hamacher & Fabricio Oliveira, 2019. "A robust optimization model for the maritime inventory routing problem," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 675-701, September.
    11. Erick Delage & Ahmed Saif, 2022. "The Value of Randomized Solutions in Mixed-Integer Distributionally Robust Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 333-353, January.
    12. Thevenin, Simon & Ben-Ammar, Oussama & Brahimi, Nadjib, 2022. "Robust optimization approaches for purchase planning with supplier selection under lead time uncertainty," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1199-1215.
    13. Yazdani, Majid & Aouam, Tarik, 2023. "Shipment planning and safety stock placement in maritime supply chains with stochastic demand and transportation times," International Journal of Production Economics, Elsevier, vol. 263(C).
    14. Chassein, André & Goerigk, Marc & Kurtz, Jannis & Poss, Michael, 2019. "Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 308-319.
    15. Rodrigues, Filipe & Agra, Agostinho & Christiansen, Marielle & Hvattum, Lars Magnus & Requejo, Cristina, 2019. "Comparing techniques for modelling uncertainty in a maritime inventory routing problem," European Journal of Operational Research, Elsevier, vol. 277(3), pages 831-845.
    16. Raa, Birger & Aouam, Tarik, 2023. "A shortfall modelling-based solution approach for stochastic cyclic inventory routing," European Journal of Operational Research, Elsevier, vol. 305(2), pages 674-684.
    17. Jørgen Bjaarstad Nikolaisen & Sofie Smith Vågen & Peter Schütz, 2023. "Solving a maritime inventory routing problem under uncertainty using optimization and simulation," Computational Management Science, Springer, vol. 20(1), pages 1-27, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Souto dos Santos Diz & Silvio Hamacher & Fabricio Oliveira, 2019. "A robust optimization model for the maritime inventory routing problem," Flexible Services and Manufacturing Journal, Springer, vol. 31(3), pages 675-701, September.
    2. Rodrigues, Filipe & Agra, Agostinho & Christiansen, Marielle & Hvattum, Lars Magnus & Requejo, Cristina, 2019. "Comparing techniques for modelling uncertainty in a maritime inventory routing problem," European Journal of Operational Research, Elsevier, vol. 277(3), pages 831-845.
    3. Hemmati, Ahmad & Hvattum, Lars Magnus & Christiansen, Marielle & Laporte, Gilbert, 2016. "An iterative two-phase hybrid matheuristic for a multi-product short sea inventory-routing problem," European Journal of Operational Research, Elsevier, vol. 252(3), pages 775-788.
    4. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    5. Markov, Iliya & Bierlaire, Michel & Cordeau, Jean-François & Maknoon, Yousef & Varone, Sacha, 2018. "A unified framework for rich routing problems with stochastic demands," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 213-240.
    6. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    7. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    8. Mutlu, Fatih & Msakni, Mohamed K. & Yildiz, Hakan & Sönmez, Erkut & Pokharel, Shaligram, 2016. "A comprehensive annual delivery program for upstream liquefied natural gas supply chain," European Journal of Operational Research, Elsevier, vol. 250(1), pages 120-130.
    9. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    10. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    11. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    12. Curcio, Eduardo & Amorim, Pedro & Zhang, Qi & Almada-Lobo, Bernardo, 2018. "Adaptation and approximate strategies for solving the lot-sizing and scheduling problem under multistage demand uncertainty," International Journal of Production Economics, Elsevier, vol. 202(C), pages 81-96.
    13. Ghiami, Yousef & Demir, Emrah & Van Woensel, Tom & Christiansen, Marielle & Laporte, Gilbert, 2019. "A deteriorating inventory routing problem for an inland liquefied natural gas distribution network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 45-67.
    14. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    15. Shang, Xiaoting & Zhang, Guoqing & Jia, Bin & Almanaseer, Mohammed, 2022. "The healthcare supply location-inventory-routing problem: A robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    16. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    17. Shin, Youngchul & Lee, Sangyoon & Moon, Ilkyeong, 2021. "Robust multiperiod inventory model with a new type of buy one get one promotion: “My Own Refrigerator”," Omega, Elsevier, vol. 99(C).
    18. Agra, Agostinho & Christiansen, Marielle & Wolsey, Laurence, 2022. "Improved models for a single vehicle continuous-time inventory routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 297(1), pages 164-179.
    19. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    20. Archetti, Claudia & Christiansen, Marielle & Grazia Speranza, M., 2018. "Inventory routing with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 268(1), pages 314-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:3:p:509-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.