IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v50y2016i3p1060-1076.html
   My bibliography  Save this article

A Branch-Price-and-Cut Algorithm for the Inventory-Routing Problem

Author

Listed:
  • Guy Desaulniers

    (Department of Mathematics and Industrial Engineering, École Polytechnique and GERAD, Montréal, Québec H3C 2A7, Canada)

  • Jørgen G. Rakke

    (Department of Marine Technology, Norwegian University of Science and Technology, 7491 Trondheim, Norway)

  • Leandro C. Coelho

    (Faculté des sciences de l’administration, Université Laval and CIRRELT, Québec, Québec G1V 0A6, Canada)

Abstract

The inventory-routing problem (IRP) integrates two well-studied problems, namely, inventory management and vehicle routing. Given a set of customers to service over a multiperiod horizon, the IRP consists of determining when to visit each customer, which quantity to deliver in each visit, and how to combine the visits in each period into feasible routes such that the total routing and inventory costs are minimized. In this paper, we propose an innovative mathematical formulation for the IRP and develop a state-of-the-art branch-price-and-cut algorithm for solving it. This algorithm incorporates known and new families of valid inequalities, including an adaptation of the well-known capacity inequalities, as well as an ad hoc labeling algorithm for solving the column generation subproblems. Through extensive computational experiments on a widely used set of 640 benchmark instances involving between two and five vehicles, we show that our branch-price-and-cut algorithm clearly outperforms a state-of-the-art branch-and-cut algorithm on the instances with four and five vehicles. In this instance set, 238 were still open before this work and we proved optimality for 54 of them.

Suggested Citation

  • Guy Desaulniers & Jørgen G. Rakke & Leandro C. Coelho, 2016. "A Branch-Price-and-Cut Algorithm for the Inventory-Routing Problem," Transportation Science, INFORMS, vol. 50(3), pages 1060-1076, August.
  • Handle: RePEc:inm:ortrsc:v:50:y:2016:i:3:p:1060-1076
    DOI: 10.1287/trsc.2015.0635
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2015.0635
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2015.0635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    2. Roberto Baldacci & Aristide Mingozzi & Roberto Roberti, 2011. "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem," Operations Research, INFORMS, vol. 59(5), pages 1269-1283, October.
    3. Gilbert Laporte & Yves Nobert & Martin Desrochers, 1985. "Optimal Routing under Capacity and Distance Restrictions," Operations Research, INFORMS, vol. 33(5), pages 1050-1073, October.
    4. Coelho, Leandro C. & Laporte, Gilbert, 2014. "Improved solutions for inventory-routing problems through valid inequalities and input ordering," International Journal of Production Economics, Elsevier, vol. 155(C), pages 391-397.
    5. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2014. "Formulations and Branch-and-Cut Algorithms for Multivehicle Production and Inventory Routing Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 103-120, February.
    6. Claudia Archetti & Luca Bertazzi & Alain Hertz & M. Grazia Speranza, 2012. "A Hybrid Heuristic for an Inventory Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(1), pages 101-116, February.
    7. Guy Desaulniers, 2010. "Branch-and-Price-and-Cut for the Split-Delivery Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 58(1), pages 179-192, February.
    8. C. Archetti & M. Bouchard & G. Desaulniers, 2011. "Enhanced Branch and Price and Cut for Vehicle Routing with Split Deliveries and Time Windows," Transportation Science, INFORMS, vol. 45(3), pages 285-298, August.
    9. Brahimi, Nadjib & Dauzere-Peres, Stephane & Najid, Najib M. & Nordli, Atle, 2006. "Single item lot sizing problems," European Journal of Operational Research, Elsevier, vol. 168(1), pages 1-16, January.
    10. Luca Bertazzi & Giuseppe Paletta & M. Grazia Speranza, 2002. "Deterministic Order-Up-To Level Policies in an Inventory Routing Problem," Transportation Science, INFORMS, vol. 36(1), pages 119-132, February.
    11. Roar Grønhaug & Marielle Christiansen & Guy Desaulniers & Jacques Desrosiers, 2010. "A Branch-and-Price Method for a Liquefied Natural Gas Inventory Routing Problem," Transportation Science, INFORMS, vol. 44(3), pages 400-415, August.
    12. Faramroze G. Engineer & Kevin C. Furman & George L. Nemhauser & Martin W. P. Savelsbergh & Jin-Hwa Song, 2012. "A Branch-Price-and-Cut Algorithm for Single-Product Maritime Inventory Routing," Operations Research, INFORMS, vol. 60(1), pages 106-122, February.
    13. Cynthia Barnhart & Ellis L. Johnson & George L. Nemhauser & Martin W. P. Savelsbergh & Pamela H. Vance, 1998. "Branch-and-Price: Column Generation for Solving Huge Integer Programs," Operations Research, INFORMS, vol. 46(3), pages 316-329, June.
    14. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    15. Claudia Archetti & Luca Bertazzi & Gilbert Laporte & Maria Grazia Speranza, 2007. "A Branch-and-Cut Algorithm for a Vendor-Managed Inventory-Routing Problem," Transportation Science, INFORMS, vol. 41(3), pages 382-391, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annelieke C. Baller & Said Dabia & Guy Desaulniers & Wout E. H. Dullaert, 2021. "The Inventory Routing Problem with Demand Moves," SN Operations Research Forum, Springer, vol. 2(1), pages 1-61, March.
    2. Zhenzhen Zhang & Zhixing Luo & Roberto Baldacci & Andrew Lim, 2021. "A Benders Decomposition Approach for the Multivehicle Production Routing Problem with Order-up-to-Level Policy," Transportation Science, INFORMS, vol. 55(1), pages 160-178, 1-2.
    3. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    4. Cárdenas-Barrón, Leopoldo Eduardo & González-Velarde, José Luis & Treviño-Garza, Gerardo & Garza-Nuñez, Dagoberto, 2019. "Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment," International Journal of Production Economics, Elsevier, vol. 211(C), pages 44-59.
    5. Manousakis, Eleftherios & Repoussis, Panagiotis & Zachariadis, Emmanouil & Tarantilis, Christos, 2021. "Improved branch-and-cut for the Inventory Routing Problem based on a two-commodity flow formulation," European Journal of Operational Research, Elsevier, vol. 290(3), pages 870-885.
    6. Skålnes, Jørgen & Andersson, Henrik & Desaulniers, Guy & Stålhane, Magnus, 2022. "An improved formulation for the inventory routing problem with time-varying demands," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1189-1201.
    7. Coelho, Leandro Callegari & De Maio, Annarita & Laganà, Demetrio, 2020. "A variable MIP neighborhood descent for the multi-attribute inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    8. Song, Ruidian & Zhao, Lei & Van Woensel, Tom & Fransoo, Jan C., 2019. "Coordinated delivery in urban retail," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 122-148.
    9. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    10. Claudia Archetti & Natashia Boland & Grazia Speranza, 2017. "A Matheuristic for the Multivehicle Inventory Routing Problem," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 377-387, August.
    11. Guy Desaulniers & Fausto Errico & Stefan Irnich & Michael Schneider, 2016. "Exact Algorithms for Electric Vehicle-Routing Problems with Time Windows," Operations Research, INFORMS, vol. 64(6), pages 1388-1405, December.
    12. Hu, Weihong & Toriello, Alejandro & Dessouky, Maged, 2018. "Integrated inventory routing and freight consolidation for perishable goods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 548-560.
    13. Darvish, Maryam & Archetti, Claudia & Coelho, Leandro C., 2019. "Trade-offs between environmental and economic performance in production and inventory-routing problems," International Journal of Production Economics, Elsevier, vol. 217(C), pages 269-280.
    14. Archetti, Claudia & Christiansen, Marielle & Grazia Speranza, M., 2018. "Inventory routing with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 268(1), pages 314-324.
    15. Roel G. van Anholt & Leandro C. Coelho & Gilbert Laporte & Iris F. A. Vis, 2016. "An Inventory-Routing Problem with Pickups and Deliveries Arising in the Replenishment of Automated Teller Machines," Transportation Science, INFORMS, vol. 50(3), pages 1077-1091, August.
    16. Bertazzi, Luca & Coelho, Leandro C. & De Maio, Annarita & Laganà, Demetrio, 2019. "A matheuristic algorithm for the multi-depot inventory routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 524-544.
    17. Yun He & Christian Artigues & Cyril Briand & Nicolas Jozefowiez & Sandra Ulrich Ngueveu, 2020. "A Matheuristic with Fixed-Sequence Reoptimization for a Real-Life Inventory Routing Problem," Transportation Science, INFORMS, vol. 54(2), pages 355-374, March.
    18. Pasquale Avella & Maurizio Boccia & Laurence A. Wolsey, 2018. "Single-Period Cutting Planes for Inventory Routing Problems," Transportation Science, INFORMS, vol. 52(3), pages 497-508, June.
    19. Fink, Martin & Desaulniers, Guy & Frey, Markus & Kiermaier, Ferdinand & Kolisch, Rainer & Soumis, François, 2019. "Column generation for vehicle routing problems with multiple synchronization constraints," European Journal of Operational Research, Elsevier, vol. 272(2), pages 699-711.
    20. Diabat, Ali & Bianchessi, Nicola & Archetti, Claudia, 2024. "On the zero-inventory-ordering policy in the inventory routing problem," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1024-1038.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:50:y:2016:i:3:p:1060-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.