IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v164y2022icp1-24.html
   My bibliography  Save this article

Distributionally robust optimization for the berth allocation problem under uncertainty

Author

Listed:
  • Agra, Agostinho
  • Rodrigues, Filipe

Abstract

Berth allocation problems are amongst the most important problems occurring in port terminals, and they are greatly affected by several unpredictable events. As a result, the study of these problems under uncertainty has been a target of more and more researchers. Following this research line, we consider the berth allocation problem under uncertain handling times. A distributionally robust two-stage model is presented to minimize the worst-case of the expected sum of delays with respect to a set of possible probability distributions of the handling times. The solutions of the proposed model are obtained by an exact decomposition algorithm for which several improvements are discussed. An adaptation of the proposed algorithm for the case where the assumption of relatively complete recourse fails is also presented. Extensive computational tests are reported to evaluate the effectiveness of the proposed approach and to compare the solutions obtained with those resulting from the stochastic and robust approaches.

Suggested Citation

  • Agra, Agostinho & Rodrigues, Filipe, 2022. "Distributionally robust optimization for the berth allocation problem under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 1-24.
  • Handle: RePEc:eee:transb:v:164:y:2022:i:c:p:1-24
    DOI: 10.1016/j.trb.2022.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261522001291
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2022.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xavier Schepler & Nabil Absi & Dominique Feillet & Eric Sanlaville, 2019. "The stochastic discrete berth allocation problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(4), pages 363-396, December.
    2. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
    3. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    4. Rodrigues, Filipe & Agra, Agostinho, 2021. "An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times," European Journal of Operational Research, Elsevier, vol. 295(2), pages 499-516.
    5. Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
    6. Ran Ji & Miguel A. Lejeune & Zhengyang Fan, 2022. "Distributionally robust portfolio optimization with linearized STARR performance measure," Quantitative Finance, Taylor & Francis Journals, vol. 22(1), pages 113-127, January.
    7. Agostinho Agra & Marielle Christiansen & Lars Magnus Hvattum & Filipe Rodrigues, 2018. "Robust Optimization for a Maritime Inventory Routing Problem," Transportation Science, INFORMS, vol. 52(3), pages 509-525, June.
    8. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    9. Guevara, Esnil & Babonneau, Fréderic & Homem-de-Mello, Tito & Moret, Stefano, 2020. "A machine learning and distributionally robust optimization framework for strategic energy planning under uncertainty," Applied Energy, Elsevier, vol. 271(C).
    10. Ursavas, Evrim & Zhu, Stuart X., 2016. "Optimal policies for the berth allocation problem under stochastic nature," European Journal of Operational Research, Elsevier, vol. 255(2), pages 380-387.
    11. Yangcan Wu & Lixin Miao & Ya Jia, 2021. "An Efficient Procedure for Inserting Buffers to Generate Robust Berth Plans in Container Terminals," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-9, March.
    12. Agra, Agostinho & Oliveira, Maryse, 2018. "MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 138-148.
    13. Changchun Liu & Xi Xiang & Li Zheng, 2017. "Two decision models for berth allocation problem under uncertainty considering service level," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 312-344, December.
    14. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    15. Nitish Umang & Michel Bierlaire & Alan L. Erera, 2017. "Real-time management of berth allocation with stochastic arrival and handling times," Journal of Scheduling, Springer, vol. 20(1), pages 67-83, February.
    16. Xiang, Xi & Liu, Changchun & Miao, Lixin, 2017. "A bi-objective robust model for berth allocation scheduling under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 294-319.
    17. Changchun Liu & Xi Xiang & Canrong Zhang & Li Zheng, 2016. "A Decision Model for Berth Allocation Under Uncertainty Considering Service Level Using an Adaptive Differential Evolution Algorithm," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(06), pages 1-28, December.
    18. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    19. Liu, Changchun, 2019. "A note on tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 278(1), pages 363-364.
    20. Zhen, Lu, 2015. "Tactical berth allocation under uncertainty," European Journal of Operational Research, Elsevier, vol. 247(3), pages 928-944.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xufeng Tang & Chang Liu & Xinqi Li & Ying Ji, 2023. "Distributionally Robust Programming of Berth-Allocation-with-Crane-Allocation Problem with Uncertain Quay-Crane-Handling Efficiency," Sustainability, MDPI, vol. 15(18), pages 1-27, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigues, Filipe & Agra, Agostinho, 2022. "Berth allocation and quay crane assignment/scheduling problem under uncertainty: A survey," European Journal of Operational Research, Elsevier, vol. 303(2), pages 501-524.
    2. Shaojian Qu & Xinqi Li & Chang Liu & Xufeng Tang & Zhisheng Peng & Ying Ji, 2023. "Two-Stage Robust Programming Modeling for Continuous Berth Allocation with Uncertain Vessel Arrival Time," Sustainability, MDPI, vol. 15(13), pages 1-30, July.
    3. Xiang, Xi & Liu, Changchun, 2021. "An almost robust optimization model for integrated berth allocation and quay crane assignment problem," Omega, Elsevier, vol. 104(C).
    4. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    5. Zhen, Lu & Zhuge, Dan & Wang, Shuaian & Wang, Kai, 2022. "Integrated berth and yard space allocation under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 162(C), pages 1-27.
    6. Rodrigues, Filipe & Agra, Agostinho, 2021. "An exact robust approach for the integrated berth allocation and quay crane scheduling problem under uncertain arrival times," European Journal of Operational Research, Elsevier, vol. 295(2), pages 499-516.
    7. Guo, Liming & Zheng, Jianfeng & Du, Haoming & Du, Jian & Zhu, Zhihong, 2022. "The berth assignment and allocation problem considering cooperative liner carriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    8. Chargui, Kaoutar & Zouadi, Tarik & Sreedharan, V. Raja & El Fallahi, Abdellah & Reghioui, Mohamed, 2023. "A novel robust exact decomposition algorithm for berth and quay crane allocation and scheduling problem considering uncertainty and energy efficiency," Omega, Elsevier, vol. 118(C).
    9. Xufeng Tang & Chang Liu & Xinqi Li & Ying Ji, 2023. "Distributionally Robust Programming of Berth-Allocation-with-Crane-Allocation Problem with Uncertain Quay-Crane-Handling Efficiency," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    10. Raeesi, Ramin & Sahebjamnia, Navid & Mansouri, S. Afshin, 2023. "The synergistic effect of operational research and big data analytics in greening container terminal operations: A review and future directions," European Journal of Operational Research, Elsevier, vol. 310(3), pages 943-973.
    11. Xiang, Xi & Liu, Changchun, 2021. "An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time," Omega, Elsevier, vol. 103(C).
    12. Correcher, Juan Francisco & Van den Bossche, Thomas & Alvarez-Valdes, Ramon & Vanden Berghe, Greet, 2019. "The berth allocation problem in terminals with irregular layouts," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1096-1108.
    13. Meixian Jiang & Jiajia Feng & Jian Zhou & Lin Zhou & Fangzheng Ma & Guanghua Wu & Yuqiu Zhang, 2023. "Multi-Terminal Berth and Quay Crane Joint Scheduling in Container Ports Considering Carbon Cost," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    14. Jaap-Jan Steeg & Menno Oudshoorn & Neil Yorke-Smith, 2023. "Berth planning and real-time disruption recovery: a simulation study for a tidal port," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 70-110, March.
    15. Changchun Liu & Xi Xiang & Li Zheng, 2020. "A two-stage robust optimization approach for the berth allocation problem under uncertainty," Flexible Services and Manufacturing Journal, Springer, vol. 32(2), pages 425-452, June.
    16. Jia, Shuai & Li, Chung-Lun & Xu, Zhou, 2020. "A simulation optimization method for deep-sea vessel berth planning and feeder arrival scheduling at a container port," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 174-196.
    17. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    18. Iris, Çağatay & Lam, Jasmine Siu Lee, 2019. "Recoverable robustness in weekly berth and quay crane planning," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 365-389.
    19. Lorenz Kolley & Nicolas Rückert & Marvin Kastner & Carlos Jahn & Kathrin Fischer, 2023. "Robust berth scheduling using machine learning for vessel arrival time prediction," Flexible Services and Manufacturing Journal, Springer, vol. 35(1), pages 29-69, March.
    20. Cheng Hong & Yufang Guo & Yuhong Wang & Tingting Li, 2023. "The Integrated Scheduling Optimization for Container Handling by Using Driverless Electric Truck in Automated Container Terminal," Sustainability, MDPI, vol. 15(6), pages 1-22, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:164:y:2022:i:c:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.