IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v68y2020i6p1866-1895.html
   My bibliography  Save this article

Why Is Maximum Clique Often Easy in Practice?

Author

Listed:
  • Jose L. Walteros

    (Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, New York 14260)

  • Austin Buchanan

    (School of Industrial Engineering and Management, Oklahoma State University, Stillwater, Oklahoma 74078)

Abstract

To this day, the maximum clique problem remains a computationally challenging problem. Indeed, despite researchers’ best efforts, there exist unsolved benchmark instances with 1,000 vertices. However, relatively simple algorithms solve real-life instances with millions of vertices in a few seconds. Why is this the case? Why is the problem apparently so easy in many naturally occurring networks? In this paper, we provide an explanation. First, we observe that the graph’s clique number ω is very near to the graph’s degeneracy d in most real-life instances. This observation motivates a main contribution of this paper, which is an algorithm for the maximum clique problem that runs in time polynomial in the size of the graph, but exponential in the gap g ≔ ( d + 1 ) − ω between the clique number ω and its degeneracy-based upper bound d +1. When this gap g can be treated as a constant, as is often the case for real-life graphs, the proposed algorithm runs in time O ( d m ) = O ( m 1.5 ) . This provides a rigorous explanation for the apparent easiness of these instances despite the intractability of the problem in the worst case. Further, our implementation of the proposed algorithm is actually practical—competitive with the best approaches from the literature.

Suggested Citation

  • Jose L. Walteros & Austin Buchanan, 2020. "Why Is Maximum Clique Often Easy in Practice?," Operations Research, INFORMS, vol. 68(6), pages 1866-1895, November.
  • Handle: RePEc:inm:oropre:v:68:y:2020:i:6:p:1866-1895
    DOI: 10.1287/opre.2019.1970
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2019.1970
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2019.1970?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    2. Anurag Verma & Austin Buchanan & Sergiy Butenko, 2015. "Solving the Maximum Clique and Vertex Coloring Problems on Very Large Sparse Networks," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 164-177, February.
    3. Felix Lieder & Fatemeh Rad & Florian Jarre, 2015. "Unifying semidefinite and set-copositive relaxations of binary problems and randomization techniques," Computational Optimization and Applications, Springer, vol. 61(3), pages 669-688, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bigler, T. & Kammermann, M. & Baumann, P., 2023. "A matheuristic for a customer assignment problem in direct marketing," European Journal of Operational Research, Elsevier, vol. 304(2), pages 689-708.
    2. S. Raghavan & Rui Zhang, 2022. "Rapid Influence Maximization on Social Networks: The Positive Influence Dominating Set Problem," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1345-1365, May.
    3. Jann Michael Weinand & Kenneth Sorensen & Pablo San Segundo & Max Kleinebrahm & Russell McKenna, 2020. "Research trends in combinatorial optimisation," Papers 2012.01294, arXiv.org.
    4. San Segundo, Pablo & Furini, Fabio & Álvarez, David & Pardalos, Panos M., 2023. "CliSAT: A new exact algorithm for hard maximum clique problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1008-1025.
    5. Yajun Lu & Hosseinali Salemi & Balabhaskar Balasundaram & Austin Buchanan, 2022. "On Fault-Tolerant Low-Diameter Clusters in Graphs," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3181-3199, November.
    6. S. Raghavan & Rui Zhang, 2022. "Influence Maximization with Latency Requirements on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 710-728, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Veremyev, Alexander & Boginski, Vladimir & Pasiliao, Eduardo L. & Prokopyev, Oleg A., 2022. "On integer programming models for the maximum 2-club problem and its robust generalizations in sparse graphs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 86-101.
    2. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    3. Florian Jarre & Felix Lieder & Ya-Feng Liu & Cheng Lu, 2020. "Set-completely-positive representations and cuts for the max-cut polytope and the unit modulus lifting," Journal of Global Optimization, Springer, vol. 76(4), pages 913-932, April.
    4. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    5. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    6. Freville, Arnaud, 2004. "The multidimensional 0-1 knapsack problem: An overview," European Journal of Operational Research, Elsevier, vol. 155(1), pages 1-21, May.
    7. Ndayikengurutse Adrien & Huang Siming, 2020. "Implementation of Presolving and Interior-Point Algorithm for Linear & Mixed Integer Programming: SOFTWARE," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 195-223, June.
    8. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.
    9. Wilbaut, Christophe & Salhi, Saïd & Hanafi, Saïd, 2009. "An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(2), pages 339-348, December.
    10. Chitra Balasubramaniam & Sergiy Butenko, 2017. "On robust clusters of minimum cardinality in networks," Annals of Operations Research, Springer, vol. 249(1), pages 17-37, February.
    11. Feng Qiu & Shabbir Ahmed & Santanu S. Dey & Laurence A. Wolsey, 2014. "Covering Linear Programming with Violations," INFORMS Journal on Computing, INFORMS, vol. 26(3), pages 531-546, August.
    12. Alexandra M. Newman & Martin Weiss, 2013. "A Survey of Linear and Mixed-Integer Optimization Tutorials," INFORMS Transactions on Education, INFORMS, vol. 14(1), pages 26-38, September.
    13. Atamturk, Alper & Nemhauser, George L. & Savelsbergh, Martin W. P., 2000. "Conflict graphs in solving integer programming problems," European Journal of Operational Research, Elsevier, vol. 121(1), pages 40-55, February.
    14. Nicolas Dupin, 2017. "Tighter MIP formulations for the discretised unit commitment problem with min-stop ramping constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 149-176, March.
    15. Ambros M. Gleixner & Timo Berthold & Benjamin Müller & Stefan Weltge, 2017. "Three enhancements for optimization-based bound tightening," Journal of Global Optimization, Springer, vol. 67(4), pages 731-757, April.
    16. Wendel Melo & Marcia Fampa & Fernanda Raupp, 2018. "Integrality gap minimization heuristics for binary mixed integer nonlinear programming," Journal of Global Optimization, Springer, vol. 71(3), pages 593-612, July.
    17. Jeff T. Linderoth & Eva K. Lee & Martin W. P. Savelsbergh, 2001. "A Parallel, Linear Programming-based Heuristic for Large-Scale Set Partitioning Problems," INFORMS Journal on Computing, INFORMS, vol. 13(3), pages 191-209, August.
    18. L. Escudero & A. Garín & G. Pérez, 1996. "On using clique overlapping for detecting knapsack constraint redundancy and infeasibility in 0–1 mixed integer programs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 4(1), pages 87-98, June.
    19. Kramer, Arthur & Lalla-Ruiz, Eduardo & Iori, Manuel & Voß, Stefan, 2019. "Novel formulations and modeling enhancements for the dynamic berth allocation problem," European Journal of Operational Research, Elsevier, vol. 278(1), pages 170-185.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:68:y:2020:i:6:p:1866-1895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.