IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v56y2013i3p787-819.html
   My bibliography  Save this article

Bound reduction using pairs of linear inequalities

Author

Listed:
  • Pietro Belotti

Abstract

We describe a procedure to reduce variable bounds in mixed integer nonlinear programming (MINLP) as well as mixed integer linear programming (MILP) problems. The procedure works by combining pairs of inequalities of a linear programming (LP) relaxation of the problem. This bound reduction procedure extends the feasibility based bound reduction technique on linear functions, used in MINLP and MILP. However, it can also be seen as a special case of optimality based bound reduction, a method to infer variable bounds from an LP relaxation of the problem. For an LP relaxation with m constraints and n variables, there are O(m 2 ) pairs of constraints, and a naïve implementation of our bound reduction scheme has complexity O(n 3 ) for each pair. Therefore, its overall complexity O(m 2 n 3 ) can be prohibitive for relatively large problems. We have developed a more efficient procedure that has complexity O(m 2 n 2 ), and embedded it in two Open-Source solvers: one for MINLP and one for MILP. We provide computational results which substantiate the usefulness of this bound reduction technique for several instances. Copyright Springer Science+Business Media, LLC. 2013

Suggested Citation

  • Pietro Belotti, 2013. "Bound reduction using pairs of linear inequalities," Journal of Global Optimization, Springer, vol. 56(3), pages 787-819, July.
  • Handle: RePEc:spr:jglopt:v:56:y:2013:i:3:p:787-819
    DOI: 10.1007/s10898-012-9848-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-012-9848-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-012-9848-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar Abhishek & Sven Leyffer & Jeff Linderoth, 2010. "FilMINT: An Outer Approximation-Based Solver for Convex Mixed-Integer Nonlinear Programs," INFORMS Journal on Computing, INFORMS, vol. 22(4), pages 555-567, November.
    2. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifu Chen & Christos T. Maravelias, 2022. "Variable Bound Tightening and Valid Constraints for Multiperiod Blending," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2073-2090, July.
    2. Patrick Gemander & Wei-Kun Chen & Dieter Weninger & Leona Gottwald & Ambros Gleixner & Alexander Martin, 2020. "Two-row and two-column mixed-integer presolve using hashing-based pairing methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 205-240, October.
    3. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    4. Brais González-Rodríguez & Joaquín Ossorio-Castillo & Julio González-Díaz & Ángel M. González-Rueda & David R. Penas & Diego Rodríguez-Martínez, 2023. "Computational advances in polynomial optimization: RAPOSa, a freely available global solver," Journal of Global Optimization, Springer, vol. 85(3), pages 541-568, March.
    5. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    6. Ambros M. Gleixner & Timo Berthold & Benjamin Müller & Stefan Weltge, 2017. "Three enhancements for optimization-based bound tightening," Journal of Global Optimization, Springer, vol. 67(4), pages 731-757, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Trespalacios & Ignacio E. Grossmann, 2015. "Algorithmic Approach for Improved Mixed-Integer Reformulations of Convex Generalized Disjunctive Programs," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 59-74, February.
    2. Wei-Kun Chen & Liang Chen & Mu-Ming Yang & Yu-Hong Dai, 2018. "Generalized coefficient strengthening cuts for mixed integer programming," Journal of Global Optimization, Springer, vol. 70(1), pages 289-306, January.
    3. Pia Domschke & Bjorn Geißler & Oliver Kolb & Jens Lang & Alexander Martin & Antonio Morsi, 2011. "Combination of Nonlinear and Linear Optimization of Transient Gas Networks," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 605-617, November.
    4. Okan Arslan & Ola Jabali & Gilbert Laporte, 2020. "A Flexible, Natural Formulation for the Network Design Problem with Vulnerability Constraints," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 120-134, January.
    5. S. Göttlich & A. Potschka & C. Teuber, 2019. "A partial outer convexification approach to control transmission lines," Computational Optimization and Applications, Springer, vol. 72(2), pages 431-456, March.
    6. Pierre Bonami & João Gonçalves, 2012. "Heuristics for convex mixed integer nonlinear programs," Computational Optimization and Applications, Springer, vol. 51(2), pages 729-747, March.
    7. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    8. Franco Peschiera & Robert Dell & Johannes Royset & Alain Haït & Nicolas Dupin & Olga Battaïa, 2021. "A novel solution approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 635-664, September.
    9. Fatima Bellahcene, 2019. "Application of the polyblock method to special integer chance constrained problem," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(4), pages 23-40.
    10. Jose L. Walteros & Austin Buchanan, 2020. "Why Is Maximum Clique Often Easy in Practice?," Operations Research, INFORMS, vol. 68(6), pages 1866-1895, November.
    11. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    12. Kaouthar Deghdak & Vincent T’kindt & Jean-Louis Bouquard, 2016. "Scheduling evacuation operations," Journal of Scheduling, Springer, vol. 19(4), pages 467-478, August.
    13. David E. Bernal & Zedong Peng & Jan Kronqvist & Ignacio E. Grossmann, 2022. "Alternative regularizations for Outer-Approximation algorithms for convex MINLP," Journal of Global Optimization, Springer, vol. 84(4), pages 807-842, December.
    14. Andreas Lundell & Jan Kronqvist & Tapio Westerlund, 2022. "The supporting hyperplane optimization toolkit for convex MINLP," Journal of Global Optimization, Springer, vol. 84(1), pages 1-41, September.
    15. Lluís-Miquel Munguía & Geoffrey Oxberry & Deepak Rajan & Yuji Shinano, 2019. "Parallel PIPS-SBB: multi-level parallelism for stochastic mixed-integer programs," Computational Optimization and Applications, Springer, vol. 73(2), pages 575-601, June.
    16. Escudero Bueno, Laureano F. & Garín Martín, María Araceli & Merino Maestre, María & Pérez Sainz de Rozas, Gloria, 2011. "A parallelizable algorithmic framework for solving large scale multi-stage stochastic mixed 0-1 problems under uncertainty," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    17. Pilla, Venkata L. & Rosenberger, Jay M. & Chen, Victoria & Engsuwan, Narakorn & Siddappa, Sheela, 2012. "A multivariate adaptive regression splines cutting plane approach for solving a two-stage stochastic programming fleet assignment model," European Journal of Operational Research, Elsevier, vol. 216(1), pages 162-171.
    18. Marian Rainer-Harbach & Petrina Papazek & Günther Raidl & Bin Hu & Christian Kloimüllner, 2015. "PILOT, GRASP, and VNS approaches for the static balancing of bicycle sharing systems," Journal of Global Optimization, Springer, vol. 63(3), pages 597-629, November.
    19. Pietro Belotti & Pierre Bonami & Matteo Fischetti & Andrea Lodi & Michele Monaci & Amaya Nogales-Gómez & Domenico Salvagnin, 2016. "On handling indicator constraints in mixed integer programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 545-566, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:56:y:2013:i:3:p:787-819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.