IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v5y2017i1d10.1007_s13675-016-0078-7.html
   My bibliography  Save this article

Tighter MIP formulations for the discretised unit commitment problem with min-stop ramping constraints

Author

Listed:
  • Nicolas Dupin

    (Univ. Lille, UMR 9189, CRIStAL, Centre de Recherche en Informatique Signal et Automatique de Lille)

Abstract

This paper elaborates compact MIP formulations for a discrete unit commitment problem with minimum stop and ramping constraints. The variables can be defined in two different ways. Both MIP formulations are tightened with clique cuts and local constraints. The projection of constraints from one variable structure to the other allows to compare and tighten the MIP formulations. This leads to several equivalent formulations in terms of polyhedral descriptions and thus in LP relaxations. We analyse how MIP resolutions differ in the efficiency of the cuts, branching and primal heuristics. The resulting MIP implementation allows to tackle real size instances for an industrial application.

Suggested Citation

  • Nicolas Dupin, 2017. "Tighter MIP formulations for the discretised unit commitment problem with min-stop ramping constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 149-176, March.
  • Handle: RePEc:spr:eurjco:v:5:y:2017:i:1:d:10.1007_s13675-016-0078-7
    DOI: 10.1007/s13675-016-0078-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-016-0078-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-016-0078-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zonghao Gu & George L. Nemhauser & Martin W. P. Savelsbergh, 1998. "Lifted Cover Inequalities for 0-1 Integer Programs: Computation," INFORMS Journal on Computing, INFORMS, vol. 10(4), pages 427-437, November.
    2. Atamturk, Alper & Nemhauser, George L. & Savelsbergh, Martin W. P., 2000. "Conflict graphs in solving integer programming problems," European Journal of Operational Research, Elsevier, vol. 121(1), pages 40-55, February.
    3. Samer Takriti & Benedikt Krasenbrink & Lilian S.-Y. Wu, 2000. "Incorporating Fuel Constraints and Electricity Spot Prices into the Stochastic Unit Commitment Problem," Operations Research, INFORMS, vol. 48(2), pages 268-280, April.
    4. M. W. P. Savelsbergh, 1994. "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 6(4), pages 445-454, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicolas Dupin & El-Ghazali Talbi, 2021. "Matheuristics to optimize refueling and maintenance planning of nuclear power plants," Journal of Heuristics, Springer, vol. 27(1), pages 63-105, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boland, Natashia & Charkhgard, Hadi & Savelsbergh, Martin, 2019. "Preprocessing and cut generation techniques for multi-objective binary programming," European Journal of Operational Research, Elsevier, vol. 274(3), pages 858-875.
    2. Wei-Kun Chen & Liang Chen & Mu-Ming Yang & Yu-Hong Dai, 2018. "Generalized coefficient strengthening cuts for mixed integer programming," Journal of Global Optimization, Springer, vol. 70(1), pages 289-306, January.
    3. Jeff T. Linderoth & Eva K. Lee & Martin W. P. Savelsbergh, 2001. "A Parallel, Linear Programming-based Heuristic for Large-Scale Set Partitioning Problems," INFORMS Journal on Computing, INFORMS, vol. 13(3), pages 191-209, August.
    4. Mervat Chouman & Teodor Gabriel Crainic & Bernard Gendron, 2018. "The impact of filtering in a branch-and-cut algorithm for multicommodity capacitated fixed charge network design," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 143-184, June.
    5. Tobias Achterberg & Robert E. Bixby & Zonghao Gu & Edward Rothberg & Dieter Weninger, 2020. "Presolve Reductions in Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 473-506, April.
    6. Robert Bixby & Edward Rothberg, 2007. "Progress in computational mixed integer programming—A look back from the other side of the tipping point," Annals of Operations Research, Springer, vol. 149(1), pages 37-41, February.
    7. Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).
    8. Ellis L. Johnson & George L. Nemhauser & Martin W.P. Savelsbergh, 2000. "Progress in Linear Programming-Based Algorithms for Integer Programming: An Exposition," INFORMS Journal on Computing, INFORMS, vol. 12(1), pages 2-23, February.
    9. Escudero, L. F. & Munoz, S., 2003. "On identifying dominant cliques," European Journal of Operational Research, Elsevier, vol. 149(1), pages 65-76, August.
    10. Santanu S. Dey & Jean-Philippe Richard, 2009. "Linear-Programming-Based Lifting and Its Application to Primal Cutting-Plane Algorithms," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 137-150, February.
    11. Patrick Bless & Diego Klabjan & Soo Chang, 2012. "Automated knowledge source selection and service composition," Computational Optimization and Applications, Springer, vol. 52(2), pages 507-535, June.
    12. Christensen, Tue R.L. & Labbé, Martine, 2015. "A branch-cut-and-price algorithm for the piecewise linear transportation problem," European Journal of Operational Research, Elsevier, vol. 245(3), pages 645-655.
    13. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
    14. Alexis Tantet & Philippe Drobinski, 2021. "A Minimal System Cost Minimization Model for Variable Renewable Energy Integration: Application to France and Comparison to Mean-Variance Analysis," Energies, MDPI, vol. 14(16), pages 1-38, August.
    15. Álvaro Porras & Concepción Domínguez & Juan Miguel Morales & Salvador Pineda, 2023. "Tight and Compact Sample Average Approximation for Joint Chance-Constrained Problems with Applications to Optimal Power Flow," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1454-1469, November.
    16. Cappanera, Paola & Visintin, Filippo & Banditori, Carlo, 2014. "Comparing resource balancing criteria in master surgical scheduling: A combined optimisation-simulation approach," International Journal of Production Economics, Elsevier, vol. 158(C), pages 179-196.
    17. Nogata, Daisuke, 2022. "Determinants of household switching between natural gas suppliers: Evidence from Japan," Utilities Policy, Elsevier, vol. 76(C).
    18. Matt Thompson, 2013. "Optimal Economic Dispatch and Risk Management of Thermal Power Plants in Deregulated Markets," Operations Research, INFORMS, vol. 61(4), pages 791-809, August.
    19. Kjetil Haugen & Stein Wallace, 2006. "Stochastic programming: Potential hazards when random variables reflect market interaction," Annals of Operations Research, Springer, vol. 142(1), pages 119-127, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:5:y:2017:i:1:d:10.1007_s13675-016-0078-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.