IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i2p479-497.html
   My bibliography  Save this article

Competitive Facility Location with Selfish Users and Queues

Author

Listed:
  • Teodora Dan

    (Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada)

  • Patrice Marcotte

    (Department of Computer Science and Operations Research, University of Montreal, Montreal, Quebec H3C 3J7, Canada)

Abstract

In a competitive environment, we consider the problem faced by a service firm that makes decisions with respect to both the location and service levels of its facilities, taking into account that users patronize the facility that maximizes their individual utility, expressed as the sum of travel time, queueing delay, and a random term. This situation can be modelled as a bilevel program that involves discrete and continuous variables as well as linear and nonlinear (convex and nonconvex) functions. We design for its solution an algorithm based on piecewise linear approximation as well as a matheuristic that exploits the very structure of the problem.

Suggested Citation

  • Teodora Dan & Patrice Marcotte, 2019. "Competitive Facility Location with Selfish Users and Queues," Operations Research, INFORMS, vol. 67(2), pages 479-497, March.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:479-497
    DOI: 10.1287/opre.2018.1781
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2018.1781
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2018.1781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Hakimi, S. Louis, 1983. "On locating new facilities in a competitive environment," European Journal of Operational Research, Elsevier, vol. 12(1), pages 29-35, January.
    3. Vladimir Marianov, 2003. "Location of Multiple-Server Congestible Facilities for Maximizing Expected Demand, when Services are Non-Essential," Annals of Operations Research, Springer, vol. 123(1), pages 125-141, October.
    4. S Kim, 2013. "A column generation heuristic for congested facility location problem with clearing functions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(12), pages 1780-1789, December.
    5. Marianov, Vladimir & Serra, Daniel, 2001. "Hierarchical location-allocation models for congested systems," European Journal of Operational Research, Elsevier, vol. 135(1), pages 195-208, November.
    6. Yue Zhang & Oded Berman & Patrice Marcotte & Vedat Verter, 2010. "A bilevel model for preventive healthcare facility network design with congestion," IISE Transactions, Taylor & Francis Journals, vol. 42(12), pages 865-880.
    7. Hossein Abouee-Mehrizi & Sahar Babri & Oded Berman & Hassan Shavandi, 2011. "Optimizing capacity, pricing and location decisions on a congested network with balking," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 233-255, October.
    8. Boffey, Brian & Galvao, Roberto & Espejo, Luis, 2007. "A review of congestion models in the location of facilities with immobile servers," European Journal of Operational Research, Elsevier, vol. 178(3), pages 643-662, May.
    9. Martine Labbé & S. Louis Hakimi, 1991. "Market and Locational Equilibrium for Two Competitors," Operations Research, INFORMS, vol. 39(5), pages 749-756, October.
    10. Haase, Knut & Müller, Sven, 2014. "A comparison of linear reformulations for multinomial logit choice probabilities in facility location models," European Journal of Operational Research, Elsevier, vol. 232(3), pages 689-691.
    11. Marianov, Vladimir & Rí­os, Miguel & Icaza, Manuel José, 2008. "Facility location for market capture when users rank facilities by shorter travel and waiting times," European Journal of Operational Research, Elsevier, vol. 191(1), pages 32-44, November.
    12. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    13. Benati, Stefano & Hansen, Pierre, 2002. "The maximum capture problem with random utilities: Problem formulation and algorithms," European Journal of Operational Research, Elsevier, vol. 143(3), pages 518-530, December.
    14. Oded Berman & Dmitry Krass, 2015. "Stochastic Location Models with Congestion," Springer Books, in: Gilbert Laporte & Stefan Nickel & Francisco Saldanha da Gama (ed.), Location Science, edition 127, chapter 0, pages 443-486, Springer.
    15. François Gilbert & Patrice Marcotte & Gilles Savard, 2015. "A Numerical Study of the Logit Network Pricing Problem," Transportation Science, INFORMS, vol. 49(3), pages 706-719, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ralf Krohn & Sven Müller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 59-87, March.
    2. Iacocca, Kathleen & Mahar, Stephen & Daniel Wright, P., 2022. "Strategic horizontal integration for drug cost reduction in the pharmaceutical supply chain," Omega, Elsevier, vol. 108(C).
    3. Sneha Dhyani Bhatt & Sachin Jayaswal & Ankur Sinha & Navneet Vidyarthi, 2021. "Alternate second order conic program reformulations for hub location under stochastic demand and congestion," Annals of Operations Research, Springer, vol. 304(1), pages 481-527, September.
    4. Zhang, Wenwei & Xu, Min & Wang, Shuaian, 2023. "Joint location and pricing optimization of self-service in urban logistics considering customers’ choice behavior," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    5. Kobkoon Janngam & Suthep Suantai & Yeol Je Cho & Attapol Kaewkhao & Rattanakorn Wattanataweekul, 2023. "A Novel Inertial Viscosity Algorithm for Bilevel Optimization Problems Applied to Classification Problems," Mathematics, MDPI, vol. 11(14), pages 1-15, July.
    6. Klein, Michael G. & Verter, Vedat & Moses, Brian G., 2020. "Designing a rural network of dialysis facilities," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1088-1100.
    7. Teodora Dan & Andrea Lodi & Patrice Marcotte, 2020. "Joint location and pricing within a user-optimized environment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 61-84, March.
    8. Xu, Xianhao & Shen, Yaohan & (Amanda) Chen, Wanying & Gong, Yeming & Wang, Hongwei, 2021. "Data-driven decision and analytics of collection and delivery point location problems for online retailers," Omega, Elsevier, vol. 100(C).
    9. Fadda, Edoardo & Manerba, Daniele & Cabodi, Gianpiero & Camurati, Paolo Enrico & Tadei, Roberto, 2021. "Comparative analysis of models and performance indicators for optimal service facility location," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yue & Liang, Liping & Liu, Emma & Chen, Chong & Atkins, Derek, 2016. "Patient choice analysis and demand prediction for a health care diagnostics company," European Journal of Operational Research, Elsevier, vol. 251(1), pages 198-205.
    2. Teodora Dan & Andrea Lodi & Patrice Marcotte, 2020. "Joint location and pricing within a user-optimized environment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 61-84, March.
    3. Cornelia Schön & Pratibha Saini, 2018. "Market-Oriented Service Network Design When Demand is Sensitive to Congestion," Transportation Science, INFORMS, vol. 52(5), pages 1253-1275, October.
    4. Hoseinpour, Pooya & Ahmadi-Javid, Amir, 2016. "A profit-maximization location-capacity model for designing a service system with risk of service interruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 113-134.
    5. Zhang, Yue, 2015. "Designing a retail store network with strategic pricing in a competitive environment," International Journal of Production Economics, Elsevier, vol. 159(C), pages 265-273.
    6. Ralf Krohn & Sven Müller & Knut Haase, 2021. "Preventive healthcare facility location planning with quality-conscious clients," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 59-87, March.
    7. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    8. Vladimir Marianov & H. A. Eiselt, 2016. "On agglomeration in competitive location models," Annals of Operations Research, Springer, vol. 246(1), pages 31-55, November.
    9. Diego Ruiz-Hernández & Javier Elizalde & David Delgado-Gómez, 2017. "Cournot–Stackelberg games in competitive delocation," Annals of Operations Research, Springer, vol. 256(1), pages 149-170, September.
    10. Yong Liang & Mengshi Lu & Zuo‐Jun Max Shen & Runyu Tang, 2021. "Data Center Network Design for Internet‐Related Services and Cloud Computing," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2077-2101, July.
    11. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.
    12. Maryam Radman & Kourosh Eshghi, 2018. "Designing a multi-service healthcare network based on the impact of patients’ flow among medical services," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(3), pages 637-678, July.
    13. Hoon Jang, 2019. "Designing capacity rollout plan for neonatal care service system in Korea," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 809-830, September.
    14. Mayadunne, Sanjaya & Johar, Monica & Saydam, Cem, 2018. "Competitive store closing during an economic downturn," International Journal of Production Economics, Elsevier, vol. 199(C), pages 162-178.
    15. Jang, Hoon & Lee, Jun-Ho, 2019. "A hierarchical location model for determining capacities of neonatal intensive care units in Korea," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    16. Marianov, Vladimir & Rí­os, Miguel & Icaza, Manuel José, 2008. "Facility location for market capture when users rank facilities by shorter travel and waiting times," European Journal of Operational Research, Elsevier, vol. 191(1), pages 32-44, November.
    17. Zhang, Yue & Atkins, Derek, 2019. "Medical facility network design: User-choice and system-optimal models," European Journal of Operational Research, Elsevier, vol. 273(1), pages 305-319.
    18. Hoseinpour, Pooya & Jalili Marand, Ata, 2022. "Designing a service system with price- and distance-sensitive demand: A case study in mining industry," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1355-1371.
    19. Lin, Yun Hui & Tian, Qingyun, 2021. "Branch-and-cut approach based on generalized benders decomposition for facility location with limited choice rule," European Journal of Operational Research, Elsevier, vol. 293(1), pages 109-119.
    20. Georg Bechler & Claudius Steinhardt & Jochen Mackert, 2021. "On the Linear Integration of Attraction Choice Models in Business Optimization Problems," SN Operations Research Forum, Springer, vol. 2(1), pages 1-13, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:479-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.