IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v123y2003i1p125-14110.1023-a1026171212594.html
   My bibliography  Save this article

Location of Multiple-Server Congestible Facilities for Maximizing Expected Demand, when Services are Non-Essential

Author

Listed:
  • Vladimir Marianov

Abstract

We formulate a model for locating multiple-server, congestible facilities. Locations of these facilities maximize total expected demand attended over the region. The effective demand at each node is elastic to the travel time to the facility, and to the congestion at that facility. The facilities to be located are fixed, so customers travel to them in order to receive service or goods, and the demand curves at each demand node (which depend on the travel time and the queue length at the facility), are known. We propose a heuristic for the resulting integer, nonlinear formulation, and provide computational experience. Copyright Kluwer Academic Publishers 2003

Suggested Citation

  • Vladimir Marianov, 2003. "Location of Multiple-Server Congestible Facilities for Maximizing Expected Demand, when Services are Non-Essential," Annals of Operations Research, Springer, vol. 123(1), pages 125-141, October.
  • Handle: RePEc:spr:annopr:v:123:y:2003:i:1:p:125-141:10.1023/a:1026171212594
    DOI: 10.1023/A:1026171212594
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1023/A:1026171212594
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1023/A:1026171212594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jónas Oddur Jónasson & Sarang Deo & Jérémie Gallien, 2017. "Improving HIV Early Infant Diagnosis Supply Chains in Sub-Saharan Africa: Models and Application to Mozambique," Operations Research, INFORMS, vol. 65(6), pages 1479-1493, December.
    2. Boffey, Brian & Galvao, Roberto & Espejo, Luis, 2007. "A review of congestion models in the location of facilities with immobile servers," European Journal of Operational Research, Elsevier, vol. 178(3), pages 643-662, May.
    3. Zaharudin, Zati Aqmar & Brint, Andrew & Genovese, Andrea, 2022. "A multi-period model for reorganising urban household waste recycling networks," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    4. Marianov, Vladimir & Rí­os, Miguel & Icaza, Manuel José, 2008. "Facility location for market capture when users rank facilities by shorter travel and waiting times," European Journal of Operational Research, Elsevier, vol. 191(1), pages 32-44, November.
    5. Simin Huang & Rajan Batta & Rakesh Nagi, 2005. "Distribution network design: Selection and sizing of congested connections," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 701-712, December.
    6. Robert Aboolian & Oded Berman & Vedat Verter, 2016. "Maximal Accessibility Network Design in the Public Sector," Transportation Science, INFORMS, vol. 50(1), pages 336-347, February.
    7. Zhang, Yue & Atkins, Derek, 2019. "Medical facility network design: User-choice and system-optimal models," European Journal of Operational Research, Elsevier, vol. 273(1), pages 305-319.
    8. Sarang Deo & Milind Sohoni, 2015. "Optimal Decentralization of Early Infant Diagnosis of HIV in Resource-Limited Settings," Manufacturing & Service Operations Management, INFORMS, vol. 17(2), pages 191-207, May.
    9. Zhang, Yue & Berman, Oded & Verter, Vedat, 2009. "Incorporating congestion in preventive healthcare facility network design," European Journal of Operational Research, Elsevier, vol. 198(3), pages 922-935, November.
    10. B Boffey & R D Galvão & V Marianov, 2010. "Location of single-server immobile facilities subject to a loss constraint," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 987-999, June.
    11. Teodora Dan & Andrea Lodi & Patrice Marcotte, 2020. "Joint location and pricing within a user-optimized environment," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(1), pages 61-84, March.
    12. Teodora Dan & Patrice Marcotte, 2019. "Competitive Facility Location with Selfish Users and Queues," Operations Research, INFORMS, vol. 67(2), pages 479-497, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:123:y:2003:i:1:p:125-141:10.1023/a:1026171212594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.