IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i1p125-132.html
   My bibliography  Save this article

Risk-Averse Two-Stage Stochastic Linear Programming: Modeling and Decomposition

Author

Listed:
  • Naomi Miller

    () (RUTCOR, Rutgers University, Piscataway, New Jersey 08854)

  • Andrzej Ruszczyński

    () (Department of Management Science and Information Systems, Rutgers University, Piscataway, New Jersey 08854)

Abstract

We formulate a risk-averse two-stage stochastic linear programming problem in which unresolved uncertainty remains after the second stage. The objective function is formulated as a composition of conditional risk measures. We analyze properties of the problem and derive necessary and sufficient optimality conditions. Next, we construct a new decomposition method for solving the problem that exploits the composite structure of the objective function. We illustrate its performance on a portfolio optimization problem.

Suggested Citation

  • Naomi Miller & Andrzej Ruszczyński, 2011. "Risk-Averse Two-Stage Stochastic Linear Programming: Modeling and Decomposition," Operations Research, INFORMS, vol. 59(1), pages 125-132, February.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:125-132
    DOI: 10.1287/opre.1100.0847
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0847
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marco Frittelli & Giacomo Scandolo, 2006. "Risk Measures And Capital Requirements For Processes," Mathematical Finance, Wiley Blackwell, vol. 16(4), pages 589-612, October.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    4. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    5. Birge, John R. & Louveaux, Francois V., 1988. "A multicut algorithm for two-stage stochastic linear programs," European Journal of Operational Research, Elsevier, vol. 34(3), pages 384-392, March.
    6. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath & Hyejin Ku, 2007. "Coherent multiperiod risk adjusted values and Bellman’s principle," Annals of Operations Research, Springer, vol. 152(1), pages 5-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    2. Bei, Xiaoqiang & Zhu, Xiaoyan & Coit, David W., 2019. "A risk-averse stochastic program for integrated system design and preventive maintenance planning," European Journal of Operational Research, Elsevier, vol. 276(2), pages 536-548.
    3. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    4. Fernández, Elena & Hinojosa, Yolanda & Puerto, Justo & Saldanha-da-Gama, Francisco, 2019. "New algorithmic framework for conditional value at risk: Application to stochastic fixed-charge transportation," European Journal of Operational Research, Elsevier, vol. 277(1), pages 215-226.
    5. Alois Pichler, 2017. "A quantitative comparison of risk measures," Annals of Operations Research, Springer, vol. 254(1), pages 251-275, July.
    6. Fei, Xin & Gülpınar, Nalân & Branke, Jürgen, 2019. "Efficient solution selection for two-stage stochastic programs," European Journal of Operational Research, Elsevier, vol. 277(3), pages 918-929.
    7. Ricardo Collado & Dávid Papp & Andrzej Ruszczyński, 2012. "Scenario decomposition of risk-averse multistage stochastic programming problems," Annals of Operations Research, Springer, vol. 200(1), pages 147-170, November.
    8. Escudero, Laureano F. & Garín, M. Araceli & Monge, Juan F. & Unzueta, Aitziber, 2020. "Some matheuristic algorithms for multistage stochastic optimization models with endogenous uncertainty and risk management," European Journal of Operational Research, Elsevier, vol. 285(3), pages 988-1001.
    9. Sıtkı Gülten & Andrzej Ruszczyński, 2015. "Two-stage portfolio optimization with higher-order conditional measures of risk," Annals of Operations Research, Springer, vol. 229(1), pages 409-427, June.
    10. Elçi, Özgün & Noyan, Nilay, 2018. "A chance-constrained two-stage stochastic programming model for humanitarian relief network design," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 55-83.
    11. R. Tyrrell Rockafellar & Johannes O. Royset, 2018. "Superquantile/CVaR risk measures: second-order theory," Annals of Operations Research, Springer, vol. 262(1), pages 3-28, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:125-132. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Matthew Walls). General contact details of provider: http://edirc.repec.org/data/inforea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.