IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v52y2004i3p464-477.html
   My bibliography  Save this article

On the Coordinated Random Group Replacement Policy in Multivariate Repairable Systems

Author

Listed:
  • Haijun Li

    (Department of Mathematics, Washington State University, Pullman, Washington 99164)

  • Susan H. Xu

    (Department of Management Science and Information Systems, Smeal College of Business Administration, Pennsylvania State University, University Park, Pennsylvania 16802)

Abstract

We study a system with multiple components and preventive maintenance. At predetermined times, some of the components are replaced with new ones. We permit the set of components that are chosen for replacement to be random and study the effect of dependency in this selection. For example, we show that it is often better to have simultaneous replacements of components, rather than replacing each component independently of the others. We also show that preventive maintenance only makes sense for components whose lifetimes are new-better-than-used (NBU).

Suggested Citation

  • Haijun Li & Susan H. Xu, 2004. "On the Coordinated Random Group Replacement Policy in Multivariate Repairable Systems," Operations Research, INFORMS, vol. 52(3), pages 464-477, June.
  • Handle: RePEc:inm:oropre:v:52:y:2004:i:3:p:464-477
    DOI: 10.1287/opre.1030.0100
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1030.0100
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1030.0100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masaaki Kijima & Toshio Nakagawa, 1991. "A cumulative damage shock model with imperfect preventive maintenance," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(2), pages 145-156, April.
    2. Lindqvist, Bo Henry, 1988. "Association of probability measures on partially ordered spaces," Journal of Multivariate Analysis, Elsevier, vol. 26(2), pages 111-132, August.
    3. Moshe Shaked & J. George Shanthikumar, 1986. "Multivariate Imperfect Repair," Operations Research, INFORMS, vol. 34(3), pages 437-448, June.
    4. Rommert Dekker & Ralph Wildeman & Frank Duyn Schouten, 1997. "A review of multi-component maintenance models with economic dependence," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 45(3), pages 411-435, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Gia-Shie, 2011. "Dynamic group instantaneous replacement policies for unreliable Markovian service systems," International Journal of Production Economics, Elsevier, vol. 130(2), pages 203-217, April.
    2. Gia-Shie Liu, 2019. "A Group Replacement Decision Support System Based on Internet of Things," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    3. Abderrahmane Abbou & Viliam Makis, 2019. "Group Maintenance: A Restless Bandits Approach," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 719-731, October.
    4. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lirong Cui & Haijun Li, 2006. "Opportunistic Maintenance for Multi-component Shock Models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 493-511, July.
    2. Li, Haijun & Xu, Susan H., 2001. "Stochastic Bounds and Dependence Properties of Survival Times in a Multicomponent Shock Model," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 63-89, January.
    3. Li, Haijun, 2003. "Association of multivariate phase-type distributions, with applications to shock models," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 381-392, October.
    4. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    5. Bruns, Peter, 2002. "Optimal maintenance strategies for systems with partial repair options and without assuming bounded costs," European Journal of Operational Research, Elsevier, vol. 139(1), pages 146-165, May.
    6. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    7. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    8. J Ansell & T Archibald & J Dagpunar & L Thomas & P Abell & D Duncalf, 2003. "Analysing maintenance data to gain insight into systems performance," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(4), pages 343-349, April.
    9. Verbert, K. & De Schutter, B. & Babuška, R., 2017. "Timely condition-based maintenance planning for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 310-321.
    10. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    11. Zhicheng Zhu & Yisha Xiang & Bo Zeng, 2021. "Multicomponent Maintenance Optimization: A Stochastic Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 898-914, July.
    12. Navarro, Jorge & Arriaza, Antonio & Suárez-Llorens, Alfonso, 2019. "Minimal repair of failed components in coherent systems," European Journal of Operational Research, Elsevier, vol. 279(3), pages 951-964.
    13. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    14. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    15. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    16. Hofert, Marius & Vrins, Frédéric, 2013. "Sibuya copulas," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 318-337.
    17. Rajiv N Rai & Nomesh Bolia, 2014. "Availability-based optimal maintenance policies for repairable systems in military aviation by identification of dominant failure modes," Journal of Risk and Reliability, , vol. 228(1), pages 52-61, February.
    18. Doostparast, Mohammad & Kolahan, Farhad & Doostparast, Mahdi, 2014. "A reliability-based approach to optimize preventive maintenance scheduling for coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 98-106.
    19. Markus Bohlin & Mathias Wärja, 2015. "Maintenance optimization with duration-dependent costs," Annals of Operations Research, Springer, vol. 224(1), pages 1-23, January.
    20. Sofie Coene & Frits C. R. Spieksma & Gerhard J. Woeginger, 2011. "Charlemagne's Challenge: The Periodic Latency Problem," Operations Research, INFORMS, vol. 59(3), pages 674-683, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:52:y:2004:i:3:p:464-477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.