IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i9p6539-6551.html
   My bibliography  Save this article

Food Delivery Service and Restaurant: Friend or Foe?

Author

Listed:
  • Manlu Chen

    (School of Business, Renmin University of China, Haidian District, Beijing 100872, China)

  • Ming Hu

    (Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada)

  • Jianfu Wang

    (College of Business, City University of Hong Kong, Kowloon 999077, Hong Kong SAR)

Abstract

With food delivery services, customers can hire delivery workers to pick up food on their behalf. To investigate the long-term impact of food delivery services on the restaurant industry, we model a restaurant serving food to customers as a stylized single-server queue with two streams of customers. One stream consists of tech-savvy customers who have access to a food delivery service platform. The other stream consists of traditional customers who are not able to use a food delivery service and only walk in by themselves. We study a Stackelberg game, in which the restaurant first sets the food price; the food delivery platform then sets the delivery fee; and, last, rational customers decide whether to walk in, balk, or use a food delivery service if they have access to one. If the restaurant has a sufficiently large established base of traditional customers, we show that the food delivery platform does not necessarily increase demand but may just change the composition of customers, as the segment of tech-savvy customers grows. Hence, paying the platform for bringing in customers may hurt the restaurant’s profitability. We demonstrate that either a one-way revenue-sharing contract with a price ceiling or a two-way revenue-sharing contract can coordinate the system and create a win-win situation. Furthermore, under conditions of no coordination between the restaurant and the platform, we show, somewhat surprisingly, that more customers having access to a food delivery service may hurt the platform itself and the society, when the food delivery service is sufficiently convenient, and the delivery-worker pool is large enough. This is because the restaurant can become a delivery-only kitchen and raise its food price by focusing on food-delivery customers only, leaving little surplus for the platform. This implies that limiting the number of delivery workers can provide a simple yet effective means for the platform to improve its own profitability while benefiting social welfare.

Suggested Citation

  • Manlu Chen & Ming Hu & Jianfu Wang, 2022. "Food Delivery Service and Restaurant: Friend or Foe?," Management Science, INFORMS, vol. 68(9), pages 6539-6551, September.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:9:p:6539-6551
    DOI: 10.1287/mnsc.2021.4245
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4245
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philipp Afèche & Haim Mendelson, 2004. "Pricing and Priority Auctions in Queueing Systems with a Generalized Delay Cost Structure," Management Science, INFORMS, vol. 50(7), pages 869-882, July.
    2. Leonard Kleinrock, 1967. "Optimum Bribing for Queue Position," Operations Research, INFORMS, vol. 15(2), pages 304-318, April.
    3. Haim Mendelson & Seungjin Whang, 1990. "Optimal Incentive-Compatible Priority Pricing for the M/M/1 Queue," Operations Research, INFORMS, vol. 38(5), pages 870-883, October.
    4. Fei Gao & Xuanming Su, 2018. "Omnichannel Service Operations with Online and Offline Self-Order Technologies," Management Science, INFORMS, vol. 64(8), pages 3595-3608, August.
    5. K. R. Balachandran, 1972. "Purchasing Priorities in Queues," Management Science, INFORMS, vol. 18(5-Part-1), pages 319-326, January.
    6. Philipp Afèche & J. Michael Pavlin, 2016. "Optimal Price/Lead-Time Menus for Queues with Customer Choice: Segmentation, Pooling, and Strategic Delay," Management Science, INFORMS, vol. 62(8), pages 2412-2436, August.
    7. Martin A. Lariviere, 2016. "OM Forum—Supply Chain Contracting: Doughnuts to Bubbles," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 309-313, July.
    8. Edelson, Noel M & Hildebrand, David K, 1975. "Congestion Tolls for Poisson Queuing Processes," Econometrica, Econometric Society, vol. 43(1), pages 81-92, January.
    9. Naor, P, 1969. "The Regulation of Queue Size by Levying Tolls," Econometrica, Econometric Society, vol. 37(1), pages 15-24, January.
    10. Shiliang Cui & Senthil Veeraraghavan, 2016. "Blind Queues: The Impact of Consumer Beliefs on Revenues and Congestion," Management Science, INFORMS, vol. 62(12), pages 3656-3672, December.
    11. Laurens Debo & Senthil Veeraraghavan, 2014. "Equilibrium in Queues Under Unknown Service Times and Service Value," Operations Research, INFORMS, vol. 62(1), pages 38-57, February.
    12. Shiliang Cui & Zhongbin Wang & Luyi Yang, 2020. "The Economics of Line-Sitting," Management Science, INFORMS, vol. 66(1), pages 227-242, January.
    13. Rafael Hassin, 1995. "Decentralized Regulation of a Queue," Management Science, INFORMS, vol. 41(1), pages 163-173, January.
    14. Lui, Francis T, 1985. "An Equilibrium Queuing Model of Bribery," Journal of Political Economy, University of Chicago Press, vol. 93(4), pages 760-781, August.
    15. Gérard P. Cachon & Martin A. Lariviere, 2005. "Supply Chain Coordination with Revenue-Sharing Contracts: Strengths and Limitations," Management Science, INFORMS, vol. 51(1), pages 30-44, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahrami, Sina & Nourinejad, Mehdi & Yin, Yafeng & Wang, Hai, 2023. "The three-sided market of on-demand delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    2. Pasirayi, Simbarashe & Fennell, Patrick B. & Sen, Argha, 2023. "The effect of third-party delivery partnerships on firm value," Journal of Business Research, Elsevier, vol. 167(C).
    3. Mónica González Morales & José Antonio Cavero Rubio, 2023. "Impact of Digitalization of Sales on the Profitability of the Restaurant Industry during COVID-19," Economies, MDPI, vol. 11(11), pages 1-16, November.
    4. Du, Zhong & Fan, Zhi-Ping & Chen, Zhongwei, 2023. "Implications of on-time delivery service with compensation for an online food delivery platform and a restaurant," International Journal of Production Economics, Elsevier, vol. 262(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Chen & Wang, Zhongbin, 2023. "The impact of line-sitting on a two-server queueing system," European Journal of Operational Research, Elsevier, vol. 308(2), pages 782-800.
    2. Chamberlain, Jonathan & Simhon, Eran & Starobinski, David, 2021. "Preemptible queues with advance reservations: Strategic behavior and revenue management," European Journal of Operational Research, Elsevier, vol. 293(2), pages 561-578.
    3. Shiliang Cui & Zhongbin Wang & Luyi Yang, 2020. "The Economics of Line-Sitting," Management Science, INFORMS, vol. 66(1), pages 227-242, January.
    4. Luyi Yang & Zhongbin Wang & Shiliang Cui, 2021. "A Model of Queue Scalping," Management Science, INFORMS, vol. 67(11), pages 6803-6821, November.
    5. Thomas Kittsteiner & Benny Moldovanu, 2005. "Priority Auctions and Queue Disciplines That Depend on Processing Time," Management Science, INFORMS, vol. 51(2), pages 236-248, February.
    6. William P. Barnett & Daniel A. Levinthal, 2017. "Special Issue Introduction: Evolutionary Logics of Strategy and Organization," Strategy Science, INFORMS, vol. 2(1), pages 1-1, March.
    7. Philipp Afèche & Haim Mendelson, 2004. "Pricing and Priority Auctions in Queueing Systems with a Generalized Delay Cost Structure," Management Science, INFORMS, vol. 50(7), pages 869-882, July.
    8. Moshe, Shir & Oz, Binyamin, 2023. "Charging more for priority via two-part tariff for accumulating priorities," European Journal of Operational Research, Elsevier, vol. 304(2), pages 652-660.
    9. Luyi Yang & Laurens Debo & Varun Gupta, 2017. "Trading Time in a Congested Environment," Management Science, INFORMS, vol. 63(7), pages 2377-2395, July.
    10. Hassin, Refael & Haviv, Moshe & Oz, Binyamin, 2023. "Strategic behavior in queues with arrival rate uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 217-224.
    11. Alessandro Arlotto & Andrew E. Frazelle & Yehua Wei, 2019. "Strategic Open Routing in Service Networks," Management Science, INFORMS, vol. 65(2), pages 735-750, February.
    12. Choi, Jay & Kim, Byung-Cheol, 2008. "Net Neutrality and Investment Incentives," Working Paper Series 19111, Victoria University of Wellington, The New Zealand Institute for the Study of Competition and Regulation.
    13. Jay Pil Choi & Byung‐Cheol Kim, 2010. "Net neutrality and investment incentives," RAND Journal of Economics, RAND Corporation, vol. 41(3), pages 446-471, September.
    14. Zhongbin Wang & Luyi Yang & Shiliang Cui & Jinting Wang, 2021. "In-queue priority purchase: a dynamic game approach," Queueing Systems: Theory and Applications, Springer, vol. 97(3), pages 343-381, April.
    15. Ming Hu & Yang Li & Jianfu Wang, 2018. "Efficient Ignorance: Information Heterogeneity in a Queue," Management Science, INFORMS, vol. 64(6), pages 2650-2671, June.
    16. Dimitrios Logothetis & Antonis Economou, 2023. "The impact of information on transportation systems with strategic customers," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2189-2206, July.
    17. Moshe Haviv & Liron Ravner, 2016. "Strategic bidding in an accumulating priority queue: equilibrium analysis," Annals of Operations Research, Springer, vol. 244(2), pages 505-523, September.
    18. Bradford, Richard M., 1996. "Pricing, routing, and incentive compatibility in multiserver queues," European Journal of Operational Research, Elsevier, vol. 89(2), pages 226-236, March.
    19. Anouar El Haji & Sander Onderstal, 2019. "Trading places: An experimental comparison of reallocation mechanisms for priority queuing," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 28(4), pages 670-686, November.
    20. Pavlin, J. Michael, 2017. "Dual bounds of a service level assignment problem with applications to efficient pricing," European Journal of Operational Research, Elsevier, vol. 262(1), pages 239-250.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:9:p:6539-6551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.