Turn Your Online Weight Management from Zero to Hero: A Multidimensional, Continuous-Time Evaluation
Author
Abstract
Suggested Citation
DOI: 10.1287/mnsc.2021.4046
Download full text from publisher
References listed on IDEAS
- Oded Netzer & James M. Lattin & V. Srinivasan, 2008. "A Hidden Markov Model of Customer Relationship Dynamics," Marketing Science, INFORMS, vol. 27(2), pages 185-204, 03-04.
- Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
- Lu (Lucy) Yan, 2018. "Good Intentions, Bad Outcomes: The Effects of Mismatches between Social Support and Health Outcomes in an Online Weight Loss Community," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 9-27, January.
- Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
- Lu Yan & Yong Tan, 2014. "Feeling Blue? Go Online: An Empirical Study of Social Support Among Patients," Information Systems Research, INFORMS, vol. 25(4), pages 690-709, December.
- Buunk, Abraham P. & Gibbons, Frederick X., 2007. "Social comparison: The end of a theory and the emergence of a field," Organizational Behavior and Human Decision Processes, Elsevier, vol. 102(1), pages 3-21, January.
- Bandura, Albert, 1991. "Social cognitive theory of self-regulation," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 248-287, December.
- Youngsoo Kim & Ramayya Krishnan, 2019. "The Dynamics of Online Consumers’ Response to Price Promotion," Service Science, INFORMS, vol. 30(1), pages 175-190, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shaohui Wu & Yong Tan & Yubo Chen & Yitian (Sky) Liang, 2022. "How Is Mobile User Behavior Different? A Hidden Markov Model of Cross-Mobile Application Usage Dynamics," Information Systems Research, INFORMS, vol. 33(3), pages 1002-1022, September.
- Yue Jin & Yong Tan & Jinghua Huang, 2022. "Managing contributor performance in knowledge‐sharing communities: A dynamic perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(11), pages 3945-3962, November.
- Sungho Park & Sachin Gupta, 2011. "A Regime-Switching Model of Cyclical Category Buying," Marketing Science, INFORMS, vol. 30(3), pages 469-480, 05-06.
- Peter Ebbes & Oded Netzer, 2022. "Using Social Network Activity Data to Identify and Target Job Seekers," Management Science, INFORMS, vol. 68(4), pages 3026-3046, April.
- Kappe, Eelco & Stadler Blank, Ashley & DeSarbo, Wayne S., 2018. "A random coefficients mixture hidden Markov model for marketing research," International Journal of Research in Marketing, Elsevier, vol. 35(3), pages 415-431.
- Tongxin Zhou & Yingfei Wang & Lu (Lucy) Yan & Yong Tan, 2023. "Spoiled for Choice? Personalized Recommendation for Healthcare Decisions: A Multiarmed Bandit Approach," Information Systems Research, INFORMS, vol. 34(4), pages 1493-1512, December.
- Sha Yang & Yi Zhao & Ravi Dhar, 2010. "Modeling the Underreporting Bias in Panel Survey Data," Marketing Science, INFORMS, vol. 29(3), pages 525-539, 05-06.
- Gui Liberali & Alina Ferecatu, 2022. "Morphing for Consumer Dynamics: Bandits Meet Hidden Markov Models," Marketing Science, INFORMS, vol. 41(4), pages 769-794, July.
- Lu Yan & Yong Tan, 2014. "Feeling Blue? Go Online: An Empirical Study of Social Support Among Patients," Information Systems Research, INFORMS, vol. 25(4), pages 690-709, December.
- Christof Naumzik & Stefan Feuerriegel & Markus Weinmann, 2022. "I Will Survive: Predicting Business Failures from Customer Ratings," Marketing Science, INFORMS, vol. 41(1), pages 188-207, January.
- Yun-Ling Wu & Cheng-Huang Tung & Chun-Chang Lee, 2017. "The Power of a Leading Indicators Fluctuation Trend for Forecasting Taiwans Real Estate Business Cycle: An Application of a Hidden Markov Model," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 7(1), pages 81-98, January.
- Liye Ma & Baohong Sun & Sunder Kekre, 2015. "The Squeaky Wheel Gets the Grease—An Empirical Analysis of Customer Voice and Firm Intervention on Twitter," Marketing Science, INFORMS, vol. 34(5), pages 627-645, September.
- Lemmens, Aurélie & Croux, Christophe & Stremersch, Stefan, 2012. "Dynamics in the international market segmentation of new product growth," International Journal of Research in Marketing, Elsevier, vol. 29(1), pages 81-92.
- Zhang, Hongchao & Yu, Yu & Qin, Yinggao, 2023. "The effects of constrained mobile coupons in the mobile channel," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
- Youngsoo Kim & Ramayya Krishnan, 2019. "The Dynamics of Online Consumers’ Response to Price Promotion," Service Science, INFORMS, vol. 30(1), pages 175-190, March.
- Ricardo Montoya & Oded Netzer & Kamel Jedidi, 2010. "Dynamic Allocation of Pharmaceutical Detailing and Sampling for Long-Term Profitability," Marketing Science, INFORMS, vol. 29(5), pages 909-924, 09-10.
- Shuai Liu & Xiao-Yu Xu & Kai Zhao & Li-Ming Xiao & Qi Li, 2021. "Understanding the Complexity of Regional Innovation Capacity Dynamics in China: From the Perspective of Hidden Markov Model," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
- Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
- Yingjie Zhang & Beibei Li & Xueming Luo & Xiaoyi Wang, 2019. "Personalized Mobile Targeting with User Engagement Stages: Combining a Structural Hidden Markov Model and Field Experiment," Information Systems Research, INFORMS, vol. 30(3), pages 787-804, September.
- Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2014. "Model Selection Using Database Characteristics: Developing a Classification Tree for Longitudinal Incidence Data," Marketing Science, INFORMS, vol. 33(2), pages 188-205, March.
More about this item
Keywords
weight management; online weight-loss communities (OWCs); self-regulation; self-regulatory dimensions; multidimensional; continuous-time hidden Markov model (MCTHMM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:5:p:3507-3527. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.