IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v30y1984i10p1184-1196.html
   My bibliography  Save this article

A Partial Covering Approach to Siting Response Resources for Major Maritime Oil Spills

Author

Listed:
  • S. Belardo

    (School of Business, State University of New York, Albany, New York 12222)

  • J. Harrald

    (Training and Education Division, U.S. Coast Guard, Washington, D.C.)

  • W. A. Wallace

    (School of Management, Rensselaer Polytechnic Institute, Troy, New York 12181)

  • J. Ward

    (Krannert Graduate School, Purdue University, West Lafayette, Indiana 47907)

Abstract

In this paper, oil spills occurring near shore in semienclosed waterways are viewed as emergency events. A partial set covering model, similar to those developed for firehouse location analysis, is applied to the problem of locating oil spill response equipment. The model includes both assessments of the relative probability of occurrence and the impact after occurrence of various spill types. A multiple objective approach enables the decisionmaker to evaluate strategies without confounding the probability of occurrence with the impact of occurrence. The paper discusses how the model can be used to support the decisions of emergency response planners who must subjectively solve the problem of attaining the best overall protection with existing resources while minimizing the risk of being unprepared for politically and environmentally sensitive events. The model discussed in the paper, although employed in a resource constrained mode, can also be used in a budget-constrained mode. The model is applied to the problem of locating oil spill response equipment on Long Island Sound, and implications for public policy are discussed in this context.

Suggested Citation

  • S. Belardo & J. Harrald & W. A. Wallace & J. Ward, 1984. "A Partial Covering Approach to Siting Response Resources for Major Maritime Oil Spills," Management Science, INFORMS, vol. 30(10), pages 1184-1196, October.
  • Handle: RePEc:inm:ormnsc:v:30:y:1984:i:10:p:1184-1196
    DOI: 10.1287/mnsc.30.10.1184
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.30.10.1184
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.30.10.1184?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bababeik, Mostafa & Khademi, Navid & Chen, Anthony, 2018. "Increasing the resilience level of a vulnerable rail network: The strategy of location and allocation of emergency relief trains," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 110-128.
    2. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    3. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    5. Zuo-Jun Max Shen & Mark S. Daskin, 2005. "Trade-offs Between Customer Service and Cost in Integrated Supply Chain Design," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 188-207, September.
    6. Paul, Nicholas R. & Lunday, Brian J. & Nurre, Sarah G., 2017. "A multiobjective, maximal conditional covering location problem applied to the relocation of hierarchical emergency response facilities," Omega, Elsevier, vol. 66(PA), pages 147-158.
    7. Tony H. Grubesic & Timothy C. Matisziw & Alan T. Murray, 2011. "Market Coverage and Service Quality in Digital Subscriber Lines Infrastructure Planning," International Regional Science Review, , vol. 34(3), pages 368-390, July.
    8. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    9. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    10. Hasani, Aliakbar & Mokhtari, Hadi, 2018. "Redesign strategies of a comprehensive robust relief network for disaster management," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 92-102.
    11. Altay, Nezih & Green III, Walter G., 2006. "OR/MS research in disaster operations management," European Journal of Operational Research, Elsevier, vol. 175(1), pages 475-493, November.
    12. Verma, Manish & Gendreau, Michel & Laporte, Gilbert, 2013. "Optimal location and capability of oil-spill response facilities for the south coast of Newfoundland," Omega, Elsevier, vol. 41(5), pages 856-867.
    13. Wang, Weiqiao & Yang, Kai & Yang, Lixing & Gao, Ziyou, 2021. "Two-stage distributionally robust programming based on worst-case mean-CVaR criterion and application to disaster relief management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    14. Iakovou, Eleftherios & Ip, Chi M. & Douligeris, Christos & Korde, Ashutosh, 1997. "Optimal location and capacity of emergency cleanup equipment for oil spill response," European Journal of Operational Research, Elsevier, vol. 96(1), pages 72-80, January.
    15. Zhou, Yawen & Liu, Jing & Zhang, Yutong & Gan, Xiaohui, 2017. "A multi-objective evolutionary algorithm for multi-period dynamic emergency resource scheduling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 99(C), pages 77-95.
    16. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.
    17. Wenshuai Wu & Yi Peng, 2016. "Extension of grey relational analysis for facilitating group consensus to oil spill emergency management," Annals of Operations Research, Springer, vol. 238(1), pages 615-635, March.
    18. Garrett, Richard A. & Sharkey, Thomas C. & Grabowski, Martha & Wallace, William A., 2017. "Dynamic resource allocation to support oil spill response planning for energy exploration in the Arctic," European Journal of Operational Research, Elsevier, vol. 257(1), pages 272-286.
    19. Wenshuai Wu & Yi Peng, 2016. "Extension of grey relational analysis for facilitating group consensus to oil spill emergency management," Annals of Operations Research, Springer, vol. 238(1), pages 615-635, March.
    20. Caunhye, Aakil M. & Zhang, Yidong & Li, Mingzhe & Nie, Xiaofeng, 2016. "A location-routing model for prepositioning and distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 161-176.
    21. Akgün, İbrahim & Gümüşbuğa, Ferhat & Tansel, Barbaros, 2015. "Risk based facility location by using fault tree analysis in disaster management," Omega, Elsevier, vol. 52(C), pages 168-179.
    22. James J. Cochran & Martin S. Levy & Jeffrey D. Camm, 2010. "Bayesian coverage optimization models," Journal of Combinatorial Optimization, Springer, vol. 19(2), pages 158-173, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:30:y:1984:i:10:p:1184-1196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.