IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v52y2022i4p363-378.html
   My bibliography  Save this article

AI-Based Real-Time Site-Wide Optimization for Process Manufacturing

Author

Listed:
  • Jayant Kalagnanam

    (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598)

  • Dzung T. Phan

    (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598)

  • Pavankumar Murali

    (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598)

  • Lam M. Nguyen

    (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598)

  • Nianjun Zhou

    (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598)

  • Dharmashankar Subramanian

    (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598)

  • Raju Pavuluri

    (IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598)

  • Xiang Ma

    (IBM Global Business Services, Calgary, Alberta T2R1R9, Canada)

  • Crystal Lui

    (IBM Global Business Services, Calgary, Alberta T2R1R9, Canada)

  • Giovane Cesar da Silva

    (IBM Global Business Services, Calgary, Alberta T2R1R9, Canada)

Abstract

In this paper, we propose a site-wide lead advisor, which is an artificial intelligence–based prediction and set-point recommendation engine, by combining the use of machine learning with optimization techniques. It provides operational set-point recommendations to continuously improve site-wide operations for throughput measured in additional barrels of oil produced per day. A key contribution and differentiator is the utilization of sensor data to continuously learn the behavior of all the subsystems of an oil-producing plant and use this within an optimization framework to provide advisory control in near real time. This is novel in that it does not require a model of the plant to be provided as input. The predictive model is learned automatically and continuously from data. This work required the development of a new prediction-optimization modeling framework that optimizes throughput while staying in the vicinity of the historical process behavior and employing the model’s structure in designing algorithms to solve it. This solution has been deployed at Suncor Energy, an oil-sands company, since January 2019 and is estimated to generate business value in the order of tens of millions of dollars per year. The generalized approach of this framework lends it the ability to be applied to any processing or manufacturing plant.

Suggested Citation

  • Jayant Kalagnanam & Dzung T. Phan & Pavankumar Murali & Lam M. Nguyen & Nianjun Zhou & Dharmashankar Subramanian & Raju Pavuluri & Xiang Ma & Crystal Lui & Giovane Cesar da Silva, 2022. "AI-Based Real-Time Site-Wide Optimization for Process Manufacturing," Interfaces, INFORMS, vol. 52(4), pages 363-378, July.
  • Handle: RePEc:inm:orinte:v:52:y:2022:i:4:p:363-378
    DOI: 10.1287/inte.2022.1121
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2022.1121
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2022.1121?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min, Qingfei & Lu, Yangguang & Liu, Zhiyong & Su, Chao & Wang, Bo, 2019. "Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry," International Journal of Information Management, Elsevier, vol. 49(C), pages 502-519.
    2. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Bolander, 2019. "What do we loose when machines take the decisions?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(4), pages 849-867, December.
    2. De Moor, Bram J. & Gijsbrechts, Joren & Boute, Robert N., 2022. "Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management," European Journal of Operational Research, Elsevier, vol. 301(2), pages 535-545.
    3. Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
    4. Anthony Coache & Sebastian Jaimungal, 2021. "Reinforcement Learning with Dynamic Convex Risk Measures," Papers 2112.13414, arXiv.org, revised Nov 2022.
    5. Jinghai He & Cheng Hua & Chunyang Zhou & Zeyu Zheng, 2025. "Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information," Papers 2501.17992, arXiv.org.
    6. Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
    7. Li, Hao & Misra, Siddharth, 2021. "Reinforcement learning based automated history matching for improved hydrocarbon production forecast," Applied Energy, Elsevier, vol. 284(C).
    8. Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    9. Jin, Jiahuan & Cui, Tianxiang & Bai, Ruibin & Qu, Rong, 2024. "Container port truck dispatching optimization using Real2Sim based deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(1), pages 161-175.
    10. Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
    11. Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
    12. Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
    13. Baoyu Liang & Yuchen Wang & Chao Tong, 2025. "AI Reasoning in Deep Learning Era: From Symbolic AI to Neural–Symbolic AI," Mathematics, MDPI, vol. 13(11), pages 1-42, May.
    14. Yeray Galán López & Cristian González García & Vicente García Díaz & Edward Rolando Núñez Valdez & Alberto Gómez Gómez, 2024. "Interpretability of rectangle packing solutions with Monte Carlo tree search," Journal of Heuristics, Springer, vol. 30(3), pages 173-198, August.
    15. Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
    16. Anthony Coache & Sebastian Jaimungal & 'Alvaro Cartea, 2022. "Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning," Papers 2206.14666, arXiv.org, revised May 2023.
    17. repec:zib:zbjtin:v:3:y:2023:i:1:p:01-05 is not listed on IDEAS
    18. Chanjuan Liu & Junming Yan & Yuanye Ma & Tianhao Zhao & Qiang Zhang & Xiaopeng Wei, 2020. "An Adversarial Search Method Based on an Iterative Optimal Strategy," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    19. Pedro Afonso Fernandes, 2024. "Forecasting with Neuro-Dynamic Programming," Papers 2404.03737, arXiv.org.
    20. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    21. J. de Curtò & I. de Zarzà, 2024. "Analysis of Transportation Systems for Colonies on Mars," Sustainability, MDPI, vol. 16(7), pages 1-28, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:52:y:2022:i:4:p:363-378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.