AI-Based Real-Time Site-Wide Optimization for Process Manufacturing
Author
Abstract
Suggested Citation
DOI: 10.1287/inte.2022.1121
Download full text from publisher
References listed on IDEAS
- Min, Qingfei & Lu, Yangguang & Liu, Zhiyong & Su, Chao & Wang, Bo, 2019. "Machine Learning based Digital Twin Framework for Production Optimization in Petrochemical Industry," International Journal of Information Management, Elsevier, vol. 49(C), pages 502-519.
- David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yi Wang & Yafei Yang & Zhaoxiang Qin & Yefei Yang & Jun Li, 2023. "A Literature Review on the Application of Digital Technology in Achieving Green Supply Chain Management," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Thomas Bolander, 2019. "What do we loose when machines take the decisions?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(4), pages 849-867, December.
- De Moor, Bram J. & Gijsbrechts, Joren & Boute, Robert N., 2022. "Reward shaping to improve the performance of deep reinforcement learning in perishable inventory management," European Journal of Operational Research, Elsevier, vol. 301(2), pages 535-545.
- Johann Lussange & Ivan Lazarevich & Sacha Bourgeois-Gironde & Stefano Palminteri & Boris Gutkin, 2021. "Modelling Stock Markets by Multi-agent Reinforcement Learning," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 113-147, January.
- Anthony Coache & Sebastian Jaimungal, 2021. "Reinforcement Learning with Dynamic Convex Risk Measures," Papers 2112.13414, arXiv.org, revised Nov 2022.
- Jinghai He & Cheng Hua & Chunyang Zhou & Zeyu Zheng, 2025. "Reinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information," Papers 2501.17992, arXiv.org.
- Bo Hu & Jiaxi Li & Shuang Li & Jie Yang, 2019. "A Hybrid End-to-End Control Strategy Combining Dueling Deep Q-network and PID for Transient Boost Control of a Diesel Engine with Variable Geometry Turbocharger and Cooled EGR," Energies, MDPI, vol. 12(19), pages 1-15, September.
- Li, Hao & Misra, Siddharth, 2021. "Reinforcement learning based automated history matching for improved hydrocarbon production forecast," Applied Energy, Elsevier, vol. 284(C).
- Zhang, Yihao & Chai, Zhaojie & Lykotrafitis, George, 2021. "Deep reinforcement learning with a particle dynamics environment applied to emergency evacuation of a room with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Jin, Jiahuan & Cui, Tianxiang & Bai, Ruibin & Qu, Rong, 2024. "Container port truck dispatching optimization using Real2Sim based deep reinforcement learning," European Journal of Operational Research, Elsevier, vol. 315(1), pages 161-175.
- Tian Zhu & Merry H. Ma, 2022. "Deriving the Optimal Strategy for the Two Dice Pig Game via Reinforcement Learning," Stats, MDPI, vol. 5(3), pages 1-14, August.
- Xiaoyue Li & John M. Mulvey, 2023. "Optimal Portfolio Execution in a Regime-switching Market with Non-linear Impact Costs: Combining Dynamic Program and Neural Network," Papers 2306.08809, arXiv.org.
- Carbone, Anna & Jensen, Meiko & Sato, Aki-Hiro, 2016. "Challenges in data science: a complex systems perspective," Chaos, Solitons & Fractals, Elsevier, vol. 90(C), pages 1-7.
- Baoyu Liang & Yuchen Wang & Chao Tong, 2025. "AI Reasoning in Deep Learning Era: From Symbolic AI to Neural–Symbolic AI," Mathematics, MDPI, vol. 13(11), pages 1-42, May.
- Yeray Galán López & Cristian González García & Vicente García Díaz & Edward Rolando Núñez Valdez & Alberto Gómez Gómez, 2024. "Interpretability of rectangle packing solutions with Monte Carlo tree search," Journal of Heuristics, Springer, vol. 30(3), pages 173-198, August.
- Feng, Cong & Zhang, Jie & Zhang, Wenqi & Hodge, Bri-Mathias, 2022. "Convolutional neural networks for intra-hour solar forecasting based on sky image sequences," Applied Energy, Elsevier, vol. 310(C).
- Anthony Coache & Sebastian Jaimungal & 'Alvaro Cartea, 2022. "Conditionally Elicitable Dynamic Risk Measures for Deep Reinforcement Learning," Papers 2206.14666, arXiv.org, revised May 2023.
- repec:zib:zbjtin:v:3:y:2023:i:1:p:01-05 is not listed on IDEAS
- Chanjuan Liu & Junming Yan & Yuanye Ma & Tianhao Zhao & Qiang Zhang & Xiaopeng Wei, 2020. "An Adversarial Search Method Based on an Iterative Optimal Strategy," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
- Pedro Afonso Fernandes, 2024. "Forecasting with Neuro-Dynamic Programming," Papers 2404.03737, arXiv.org.
- Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- J. de Curtò & I. de Zarzà, 2024. "Analysis of Transportation Systems for Colonies on Mars," Sustainability, MDPI, vol. 16(7), pages 1-28, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:52:y:2022:i:4:p:363-378. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.