Predicting and Explaining Pig Iron Production on Charcoal Blast Furnaces: A Machine Learning Approach
Author
Abstract
Suggested Citation
DOI: 10.1287/inte.2020.1058
Download full text from publisher
References listed on IDEAS
- Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
- Swayambhu Chatterjee & Shuyuan Deng & Jun Liu & Ronghua Shan & Wu Jiao, 2018. "Classifying facts and opinions in Twitter messages: a deep learning-based approach," Journal of Business Analytics, Taylor & Francis Journals, vol. 1(1), pages 29-39, January.
- Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017.
"Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500,"
European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
- Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2016. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," FAU Discussion Papers in Economics 03/2016, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Christopher Krauss & Xuan Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01515120, HAL.
- Delen, Dursun & Cogdell, Douglas & Kasap, Nihat, 2012. "A comparative analysis of data mining methods in predicting NCAA bowl outcomes," International Journal of Forecasting, Elsevier, vol. 28(2), pages 543-552.
- David L. Olson & Dursun Delen, 2008. "Advanced Data Mining Techniques," Springer Books, Springer, number 978-3-540-76917-0, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Matthew Harding & Gabriel F. R. Vasconcelos, 2022. "Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?," Papers 2202.04218, arXiv.org.
- Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
- Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
- Weiguang Han & Boyi Zhang & Qianqian Xie & Min Peng & Yanzhao Lai & Jimin Huang, 2023. "Select and Trade: Towards Unified Pair Trading with Hierarchical Reinforcement Learning," Papers 2301.10724, arXiv.org, revised Feb 2023.
- Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
- Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
- Mercadier, Mathieu & Lardy, Jean-Pierre, 2019.
"Credit spread approximation and improvement using random forest regression,"
European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
- Mathieu Mercadier & Jean-Pierre Lardy, 2019. "Credit Spread Approximation and Improvement using Random Forest Regression," Post-Print hal-02057019, HAL.
- Mathieu Mercadier & Jean-Pierre Lardy, 2019. "Credit spread approximation and improvement using random forest regression," Post-Print hal-03241566, HAL.
- Mathieu Mercadier & Jean-Pierre Lardy, 2021. "Credit spread approximation and improvement using random forest regression," Papers 2106.07358, arXiv.org.
- Xiaohua Zeng & Changzhou Liang & Qian Yang & Fei Wang & Jieping Cai, 2025. "Enhancing stock index prediction: A hybrid LSTM-PSO model for improved forecasting accuracy," PLOS ONE, Public Library of Science, vol. 20(1), pages 1-31, January.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
- Ma, T. & Fraser-Mackenzie, P.A.F. & Sung, M. & Kansara, A.P. & Johnson, J.E.V., 2022. "Are the least successful traders those most likely to exit the market? A survival analysis contribution to the efficient market debate," European Journal of Operational Research, Elsevier, vol. 299(1), pages 330-345.
- Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
- Wilmar Calderón-Guevara & Mauricio Sánchez-Silva & Bogdan Nitescu & Daniel F. Villarraga, 2022. "Comparative review of data-driven landslide susceptibility models: case study in the Eastern Andes mountain range of Colombia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(2), pages 1105-1132, September.
- Schnaubelt, Matthias & Fischer, Thomas G. & Krauss, Christopher, 2020. "Separating the signal from the noise – Financial machine learning for Twitter," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
- Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
- Keer Yang & Guanqun Zhang & Chuan Bi & Qiang Guan & Hailu Xu & Shuai Xu, 2023. "Improving CNN-base Stock Trading By Considering Data Heterogeneity and Burst," Papers 2303.09407, arXiv.org.
- Wang, Peiwan & Zong, Lu, 2023. "Does machine learning help private sectors to alarm crises? Evidence from China’s currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
- Lohrmann, Christoph & Luukka, Pasi, 2019. "Classification of intraday S&P500 returns with a Random Forest," International Journal of Forecasting, Elsevier, vol. 35(1), pages 390-407.
- Ma, Chenyao & Yan, Sheng, 2022. "Deep learning in the Chinese stock market: The role of technical indicators," Finance Research Letters, Elsevier, vol. 49(C).
- Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:51:y:2021:i:3:p:213-235. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.