IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v43y2013i2p142-151.html
   My bibliography  Save this article

Optimal Routing and Assignment of Consultants for Energy Education, Inc

Author

Listed:
  • Junfang Yu

    (Department of Engineering Management, Information and Systems, Southern Methodist University, Dallas, Texas 75205)

  • Randy Hoff

    (Energy Education, Inc., Dallas, Texas 75225)

Abstract

Energy Education, Inc. (EEI), a US management consulting firm, specializes in implementing energy conservation programs for schools, universities, and large churches. Similar to many consulting firms, travel expenses are among its largest budget items. Managing consultant travel for minimum cost and in a manner that meets client needs is critical. Typically, a subject matter expert at the company produces a consultant routing and assignment schedule using a labor-intensive, time-consuming, manual process; the schedule produced is usually far from optimal. The objective of our research is to minimize the total cost of consultant travel and staffing. Our models use a cluster-first, route-second methodology. We developed a set-covering binary integer programming heuristic to cluster clients based on geographic location. The relaxed consultant routing and assignment problem is formulated as a mixed-integer linear programming model using cluster locations and demand with consultant skills and availability. In a recent 12-week period, the results of our research reduced EEI costs by 24 percent and provided several qualitative benefits. We conducted sensitivity analysis to provide EEI with improved decision analytics for additional modification of its existing processes and business routines.

Suggested Citation

  • Junfang Yu & Randy Hoff, 2013. "Optimal Routing and Assignment of Consultants for Energy Education, Inc," Interfaces, INFORMS, vol. 43(2), pages 142-151, April.
  • Handle: RePEc:inm:orinte:v:43:y:2013:i:2:p:142-151
    DOI: 10.1287/inte.1120.0656
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.1120.0656
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.1120.0656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan F. Bard & George Kontoravdis & Gang Yu, 2002. "A Branch-and-Cut Procedure for the Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 36(2), pages 250-269, May.
    2. Constantine Toregas & Ralph Swain & Charles ReVelle & Lawrence Bergman, 1971. "The Location of Emergency Service Facilities," Operations Research, INFORMS, vol. 19(6), pages 1363-1373, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Murray, Alan T. & Church, Richard L., 1997. "Facets for node packing," European Journal of Operational Research, Elsevier, vol. 101(3), pages 598-608, September.
    2. Benjamin M. Taylor, 2017. "Spatial modelling of emergency service response times," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 433-453, February.
    3. Li, Hongmei & Luo, Taibo & Xu, Yinfeng & Xu, Jiuping, 2018. "Minimax regret vertex centdian location problem in general dynamic networks," Omega, Elsevier, vol. 75(C), pages 87-96.
    4. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    5. Phillip R. Jenkins & Matthew J. Robbins & Brian J. Lunday, 2021. "Approximate Dynamic Programming for Military Medical Evacuation Dispatching Policies," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 2-26, January.
    6. Mahmutoğulları, Özlem & Yaman, Hande, 2023. "Robust alternative fuel refueling station location problem with routing under decision-dependent flow uncertainty," European Journal of Operational Research, Elsevier, vol. 306(1), pages 173-188.
    7. Eiselt, H.A. & Marianov, Vladimir, 2012. "Mobile phone tower location for survival after natural disasters," European Journal of Operational Research, Elsevier, vol. 216(3), pages 563-572.
    8. Shaw, Lipika & Das, Soumen Kumar & Roy, Sankar Kumar, 2022. "Location-allocation problem for resource distribution under uncertainty in disaster relief operations," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    9. Bell, Michael G.H. & Fonzone, Achille & Polyzoni, Chrisanthi, 2014. "Depot location in degradable transport networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 148-161.
    10. Badri, Masood A., 1999. "Combining the analytic hierarchy process and goal programming for global facility location-allocation problem," International Journal of Production Economics, Elsevier, vol. 62(3), pages 237-248, September.
    11. Nicole Adler & Alfred Hakkert & Jonathan Kornbluth & Tal Raviv & Mali Sher, 2014. "Location-allocation models for traffic police patrol vehicles on an interurban network," Annals of Operations Research, Springer, vol. 221(1), pages 9-31, October.
    12. Yaw Asiedu & Mark Rempel, 2011. "A multiobjective coverage‐based model for Civilian search and rescue," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(3), pages 167-179, April.
    13. Yibo Dang & Manjeet Singh & Theodore T. Allen, 2021. "Network Mode Optimization for the DHL Supply Chain," Interfaces, INFORMS, vol. 51(3), pages 179-199, May.
    14. Jian Wang & Yin Wang & Mingzhu Yu, 2022. "A multi-period ambulance location and allocation problem in the disaster," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 909-932, July.
    15. T. C. Barneveld & S. Bhulai & R. D. Mei, 2017. "A dynamic ambulance management model for rural areas," Health Care Management Science, Springer, vol. 20(2), pages 165-186, June.
    16. Ran Liu & Zhibin Jiang, 2019. "A constraint relaxation-based algorithm for the load-dependent vehicle routing problem with time windows," Flexible Services and Manufacturing Journal, Springer, vol. 31(2), pages 331-353, June.
    17. Shaoqing Geng & Hanping Hou & Zhou Zhou, 2024. "A dynamic multi-objective model for emergency shelter relief system design integrating the supply and demand sides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2379-2402, February.
    18. Roberto Aringhieri & Giuliana Carello & Daniela Morale, 2016. "Supporting decision making to improve the performance of an Italian Emergency Medical Service," Annals of Operations Research, Springer, vol. 236(1), pages 131-148, January.
    19. Karl Schneeberger & Karl Doerner & Andrea Kurz & Michael Schilde, 2016. "Ambulance location and relocation models in a crisis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 1-27, March.
    20. Benjamin Lev, 2008. "Book Reviews," Interfaces, INFORMS, vol. 38(1), pages 76-80, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:43:y:2013:i:2:p:142-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.