IDEAS home Printed from https://ideas.repec.org/a/igg/joris0/v12y2021i2p15-32.html
   My bibliography  Save this article

Detecting Community Structures Within Complex Networks Using a Discrete Unconscious Search Algorithm

Author

Listed:
  • Ehsan Ardjmand

    (Ohio University, USA)

  • William A. Young II

    (Ohio University, USA)

  • Najat E. Almasarwah

    (Ohio University, USA)

Abstract

Detecting the communities that exist within complex social networks has a wide range of application in business, engineering, and sociopolitical settings. As a result, many community detection methods are being developed by researchers in the academic community. If the communities within social networks can be more accurately detected, the behavior or characteristics of each community within the networks can be better understood, which implies that better decisions can be made. In this paper, a discrete version of an unconscious search algorithm was applied to three widely explored complex networks. After these networks were formulated as optimization problems, the unconscious search algorithm was applied, and the results were compared against the results found from a comprehensive review of state-of-the-art community detection methods. The comparative study shows that the unconscious search algorithm consistently produced the highest modularity that was discovered through the comprehensive review of the literature.

Suggested Citation

  • Ehsan Ardjmand & William A. Young II & Najat E. Almasarwah, 2021. "Detecting Community Structures Within Complex Networks Using a Discrete Unconscious Search Algorithm," International Journal of Operations Research and Information Systems (IJORIS), IGI Global Scientific Publishing, vol. 12(2), pages 15-32, April.
  • Handle: RePEc:igg:joris0:v:12:y:2021:i:2:p:15-32
    as

    Download full text from publisher

    File URL: https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJORIS.20210401.oa2
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dabaghi Zarandi, Fataneh & Kuchaki Rafsanjani, Marjan, 2018. "Community detection in complex networks using structural similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 882-891.
    2. Bilal, Saoud & Abdelouahab, Moussaoui, 2017. "Evolutionary algorithm and modularity for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 89-96.
    3. Zhou, HongFang & Li, Jin & Li, JunHuai & Zhang, FaCun & Cui, YingAn, 2017. "A graph clustering method for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 551-562.
    4. Barigozzi, Matteo & Fagiolo, Giorgio & Mangioni, Giuseppe, 2011. "Identifying the community structure of the international-trade multi-network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2051-2066.
    5. Sun, H.J. & Gao, Z.Y., 2007. "Dynamical behaviors of epidemics on scale-free networks with community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 381(C), pages 491-496.
    6. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo Mesa-Arango & Badri Narayanan & Satish V. Ukkusuri, 2019. "The Impact of International Crises on Maritime Transportation Based Global Value Chains," Networks and Spatial Economics, Springer, vol. 19(2), pages 381-408, June.
    2. Hao, Xiaoqing & An, Haizhong & Jiang, Meihui & Sun, Xiaoqi, 2024. "Supply shock propagation in the multi-layer network of global steel product chain: Additive effect of trade and production," Resources Policy, Elsevier, vol. 89(C).
    3. Marco Dueñas & Giorgio Fagiolo, 2013. "Modeling the International-Trade Network: a gravity approach," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 8(1), pages 155-178, April.
    4. Jiang, Jianhua & Yang, Xi & Meng, Xianqiu & Li, Keqin, 2020. "Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    5. Hao Long & Xiao-Wei Liu, 2019. "A Unified Community Detection Algorithm In Large-Scale Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-19, May.
    6. John J Bartholdi & Pisit Jarumaneeroj & Amar Ramudhin, 2016. "A new connectivity index for container ports," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 18(3), pages 231-249, September.
    7. Khomami, Mohammad Mehdi Daliri & Meybodi, Mohammad Reza & Rezvanian, Alireza, 2024. "Exploring social networks through stochastic multilayer graph modeling," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    8. Chessa, Michela & Persenda, Arnaud & Torre, Dominique, 2023. "Brexit and Canadadvent: An application of graphs and hypergraphs to recent international trade agreements," International Economics, Elsevier, vol. 175(C), pages 1-12.
    9. Fraňková, Eva & Fousek, Jan & Kala, Lukáš & Labohý, Jan, 2014. "Transaction network analysis for studying Local Exchange Trading Systems (LETS): Research potentials and limitations," Ecological Economics, Elsevier, vol. 107(C), pages 266-275.
    10. Russo, Margherita & Alboni, Fabrizio & Sanginés, Jorge Carreto & De Domenico, Manlio & Mangioni, Giuseppe & Righi, Simone & Simonazzi, Annamaria, 2023. "Regionalisation and cross-region integration. Twin dynamics in the automotive international trade networks," Structural Change and Economic Dynamics, Elsevier, vol. 67(C), pages 98-114.
    11. Yuichi Ikeda, 2020. "An Interacting Agent Model of Economic Crisis," Papers 2001.11843, arXiv.org.
    12. Matteo Barigozzi & Marc Hallin, 2015. "Networks, Dynamic Factors, and the Volatility Analysis of High-Dimensional Financial Series," Working Papers ECARES ECARES 2015-34, ULB -- Universite Libre de Bruxelles.
    13. Juan Lucio & Raúl Mínguez & Asier Minondo & Francisco Requena, 2016. "Networks and the Dynamics of Firms' Export Portfolio: Evidence for Mexico," The World Economy, Wiley Blackwell, vol. 39(5), pages 708-736, May.
    14. A. Baronchelli & T.E. Uberti, 2018. "Exports and FDI: comparing networks in the new millennium," Working Paper CRENoS 201813, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    15. Liu, Linqing & Shen, Mengyun & Sun, Da & Yan, Xiaofei & Hu, Shi, 2022. "Preferential attachment, R&D expenditure and the evolution of international trade networks from the perspective of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    16. Takayuki Mizuno & Takaaki Ohnishi & Tsutomu Watanabe, 2015. "Structure of global buyer-supplier networks and its implications for conflict minerals regulations," Papers 1505.02274, arXiv.org.
    17. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    18. Suhua Ou & Qingshan Yang & Jian Liu, 2024. "The global production pattern of the semiconductor industry: an empirical research based on trade network," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    19. Yang, Yu & Poon, Jessie P.H. & Liu, Yi & Bagchi-Sen, Sharmistha, 2015. "Small and flat worlds: A complex network analysis of international trade in crude oil," Energy, Elsevier, vol. 93(P1), pages 534-543.
    20. Nicolò Musmeci & Vincenzo Nicosia & Tomaso Aste & Tiziana Di Matteo & Vito Latora, 2017. "The Multiplex Dependency Structure of Financial Markets," Complexity, Hindawi, vol. 2017, pages 1-13, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:joris0:v:12:y:2021:i:2:p:15-32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.