IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp457-475.html
   My bibliography  Save this article

An evolutionary method for community detection using a novel local search strategy

Author

Listed:
  • Moradi, Mehdi
  • Parsa, Saeed

Abstract

Community detection is an NP-hard problem. Therefore, evolutionary-based optimization methods are conventionally applied to cope with the problem. The primary challenge regarding the application of evolutionary-based approaches, specifically to handle large complex networks, is their relatively long execution time. In this respect, this article proposes an extension of a known genetic algorithm, Genetic Algorithm for Community Detection (GACD), for community detection. This new extension is supplied with a novel local search strategy to speed up the convergence and improve the accuracy of the GACD algorithm. To reduce the search space, a locus-based representation of the complex network, in which communities are to be detected, is applied. This type of representation incorporates domain-specific knowledge with the solutions through initialization and reproduction operators. In addition, it does not need to know the number of communities at the beginning of the search process. Our experiments with the real-world and Lancichinetti–Fortunato–Radicchi (LFR) network datasets demonstrate the relatively high capacity of our proposed genetic algorithm in detecting communities with relatively fewer generations and more precision.

Suggested Citation

  • Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:457-475
    DOI: 10.1016/j.physa.2019.01.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119301402
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shang, Ronghua & Bai, Jing & Jiao, Licheng & Jin, Chao, 2013. "Community detection based on modularity and an improved genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1215-1231.
    2. Matthew C Benigni & Kenneth Joseph & Kathleen M Carley, 2017. "Online extremism and the communities that sustain it: Detecting the ISIS supporting community on Twitter," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-23, December.
    3. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    4. Gong, Maoguo & Ma, Lijia & Zhang, Qingfu & Jiao, Licheng, 2012. "Community detection in networks by using multiobjective evolutionary algorithm with decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4050-4060.
    5. Moradi, Parham & Ahmadian, Sajad & Akhlaghian, Fardin, 2015. "An effective trust-based recommendation method using a novel graph clustering algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 462-481.
    6. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2015. "Epidemic spreading on complex networks with overlapping and non-overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 171-182.
    7. Saoud, Bilal & Moussaoui, Abdelouahab, 2016. "Community detection in networks based on minimum spanning tree and modularity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 460(C), pages 230-234.
    8. Chuan Shi & Zhenyu Yan & Yi Wang & Yanan Cai & Bin Wu, 2010. "A Genetic Algorithm For Detecting Communities In Large-Scale Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 3-17.
    9. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    10. Wang, Zuxi & Li, Qingguang & Jin, Fengdong & Xiong, Wei & Wu, Yao, 2016. "Hyperbolic mapping of complex networks based on community information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 104-119.
    11. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
    2. Jiang, Jianhua & Yang, Xi & Meng, Xianqiu & Li, Keqin, 2020. "Enhance chaotic gravitational search algorithm (CGSA) by balance adjustment mechanism and sine randomness function for continuous optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    3. Jiang, Jianhua & Xu, Meirong & Meng, Xianqiu & Li, Keqin, 2020. "STSA: A sine Tree-Seed Algorithm for complex continuous optimization problems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Shang, Ronghua & Zhang, Weitong & Zhang, Jingwen & Feng, Jie & Jiao, Licheng, 2022. "Local community detection based on higher-order structure and edge information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    5. Ehsan Ardjmand & William A. Young II & Najat E. Almasarwah, 2021. "Detecting Community Structures Within Complex Networks Using a Discrete Unconscious Search Algorithm," International Journal of Operations Research and Information Systems (IJORIS), IGI Global, vol. 12(2), pages 15-32, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
    2. Lin Yu & Xiaodan Guo & Dongdong Zhou & Jie Zhang, 2024. "A Multi-Objective Pigeon-Inspired Optimization Algorithm for Community Detection in Complex Networks," Mathematics, MDPI, vol. 12(10), pages 1-20, May.
    3. Dabaghi Zarandi, Fataneh & Kuchaki Rafsanjani, Marjan, 2018. "Community detection in complex networks using structural similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 882-891.
    4. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    5. Zou, Feng & Chen, Debao & Huang, De-Shuang & Lu, Renquan & Wang, Xude, 2019. "Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 662-674.
    6. Xiao, Jing & Zhang, Yong-Jian & Xu, Xiao-Ke, 2018. "Convergence improvement of differential evolution for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 762-779.
    7. Shang, Ronghua & Liu, Huan & Jiao, Licheng, 2017. "Multi-objective clustering technique based on k-nodes update policy and similarity matrix for mining communities in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1-24.
    8. Li, Jichao & Ge, Bingfeng & Yang, Kewei & Chen, Yingwu & Tan, Yuejin, 2017. "Meta-path based heterogeneous combat network link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 507-523.
    9. Bilal, Saoud & Abdelouahab, Moussaoui, 2017. "Evolutionary algorithm and modularity for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 89-96.
    10. Chen, Kaiqi & Bi, Weihong, 2019. "A new genetic algorithm for community detection using matrix representation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    11. Yin, Likang & Zheng, Haoyang & Bian, Tian & Deng, Yong, 2017. "An evidential link prediction method and link predictability based on Shannon entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 699-712.
    12. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    13. Zhang, Weitong & Zhang, Rui & Shang, Ronghua & Li, Juanfei & Jiao, Licheng, 2019. "Application of natural computation inspired method in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 130-150.
    14. Deng, Zheng-Hong & Qiao, Hong-Hai & Song, Qun & Gao, Li, 2019. "A complex network community detection algorithm based on label propagation and fuzzy C-means," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 217-226.
    15. Yao, Yabing & Zhang, Ruisheng & Yang, Fan & Tang, Jianxin & Yuan, Yongna & Hu, Rongjing, 2018. "Link prediction in complex networks based on the interactions among paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 52-67.
    16. Wu, Jianshe & Zhang, Long & Li, Yong & Jiao, Yang, 2016. "Partition signed social networks via clustering dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 568-582.
    17. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    18. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    19. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    20. Matthew Benigni & Kenneth Joseph & Kathleen M. Carley, 2018. "Mining online communities to inform strategic messaging: practical methods to identify community-level insights," Computational and Mathematical Organization Theory, Springer, vol. 24(2), pages 224-242, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:457-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.