IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v513y2019icp662-674.html
   My bibliography  Save this article

Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks

Author

Listed:
  • Zou, Feng
  • Chen, Debao
  • Huang, De-Shuang
  • Lu, Renquan
  • Wang, Xude

Abstract

Community structure is an important topological property of complex networks representing real-world systems, and it is believed to be a highly important tool for understanding how complex networks are organized and function. Generally, community detection can be considered to be a single-objective or multi-objective optimization problem, and a great number of population-based optimization algorithms have been explored to address this problem in the past several decades. In this study, we present a novel discrete inverse modelling-based multi-objective evolutionary algorithm with decomposition (DIM-MOEA/D) for community detection in complex networks. First, the population is initialized by a problem-specific method based on label propagation. Next, inverse models based on the network topology are constructed to generate offspring by sampling the objective space, and the problem-specific mutation is introduced to maintain the diversity of the population and avoid being trapped in the local optima. Next, the decomposition-based selection is introduced as the updating rule of individuals. Finally, several real-world networks are considered to evaluate the performance of the proposed algorithm. The experimental results demonstrate that compared with the state-of-the-art approaches, DIM-MOEA/D is an effective and promising method for solving community detection in complex networks.

Suggested Citation

  • Zou, Feng & Chen, Debao & Huang, De-Shuang & Lu, Renquan & Wang, Xude, 2019. "Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 662-674.
  • Handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:662-674
    DOI: 10.1016/j.physa.2018.08.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118310185
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.08.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xu & Liu, Yanheng & Li, Bin & Sun, Geng, 2015. "Multiobjective biogeography based optimization algorithm with decomposition for community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 430-442.
    2. Gong, Maoguo & Ma, Lijia & Zhang, Qingfu & Jiao, Licheng, 2012. "Community detection in networks by using multiobjective evolutionary algorithm with decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4050-4060.
    3. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Guerrero & Consolación Gil & Francisco G. Montoya & Alfredo Alcayde & Raúl Baños, 2020. "Multi-Objective Evolutionary Algorithms to Find Community Structures in Large Networks," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    2. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Guerrero & Consolación Gil & Francisco G. Montoya & Alfredo Alcayde & Raúl Baños, 2020. "Multi-Objective Evolutionary Algorithms to Find Community Structures in Large Networks," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    2. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
    3. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    4. Xiao, Jing & Zhang, Yong-Jian & Xu, Xiao-Ke, 2018. "Convergence improvement of differential evolution for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 762-779.
    5. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    6. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    7. Lu Wei & Na Liu & Junhua Chen & Jihong Sun, 2022. "Topic Evolution of Chinese COVID-19 Policies Based on Co-Occurrence Clustering Network Analysis," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    8. Zhan, Weihua & Deng, Lei & Guan, Jihong & Niu, Jun & Sun, Dechao, 2020. "Revealing dynamic communities in networks using genetic algorithm with merge and split operators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    9. Shang, Ronghua & Liu, Huan & Jiao, Licheng, 2017. "Multi-objective clustering technique based on k-nodes update policy and similarity matrix for mining communities in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1-24.
    10. Xin, Yu & Xie, Zhi-Qiang & Yang, Jing, 2016. "The adaptive dynamic community detection algorithm based on the non-homogeneous random walking," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 241-252.
    11. Li, Jun-fang & Zhang, Bu-han & Liu, Yi-fang & Wang, Kui & Wu, Xiao-shan, 2012. "Spatial evolution character of multi-objective evolutionary algorithm based on self-organized criticality theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5490-5499.
    12. Wenxin Zhu & Huan Li & Wenhong Wei, 2023. "A Two-Stage Multi-Objective Evolutionary Algorithm for Community Detection in Complex Networks," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    13. Teddy Lazebnik & Tzach Fleischer & Amit Yaniv-Rosenfeld, 2023. "Benchmarking Biologically-Inspired Automatic Machine Learning for Economic Tasks," Sustainability, MDPI, vol. 15(14), pages 1-9, July.
    14. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    15. Shen, Yi, 2014. "The similarity of weights on edges and discovering of community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 560-570.
    16. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    17. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    18. Ebrahimi, Morteza & Shahmoradi, Mohammad Reza & Heshmati, Zainabolhoda & Salehi, Mostafa, 2018. "A novel method for overlapping community detection using Multi-objective optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 825-835.
    19. Sun, Yixiang & Du, Haifeng & Gong, Maoguo & Ma, Lijia & Wang, Shanfeng, 2014. "Fast computing global structural balance in signed networks based on memetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 261-272.
    20. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:513:y:2019:i:c:p:662-674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.