IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v391y2012i15p4050-4060.html
   My bibliography  Save this article

Community detection in networks by using multiobjective evolutionary algorithm with decomposition

Author

Listed:
  • Gong, Maoguo
  • Ma, Lijia
  • Zhang, Qingfu
  • Jiao, Licheng

Abstract

Community structure is an important property of complex networks. Most optimization-based community detection algorithms employ single optimization criteria. In this study, the community detection is solved as a multiobjective optimization problem by using the multiobjective evolutionary algorithm based on decomposition. The proposed algorithm maximizes the density of internal degrees, and minimizes the density of external degrees simultaneously. It can produce a set of solutions which can represent various divisions to the networks at different hierarchical levels. The number of communities is automatically determined by the non-dominated individuals resulting from our algorithm. Experiments on both synthetic and real-world network datasets verify that our algorithm is highly efficient at discovering quality community structure.

Suggested Citation

  • Gong, Maoguo & Ma, Lijia & Zhang, Qingfu & Jiao, Licheng, 2012. "Community detection in networks by using multiobjective evolutionary algorithm with decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4050-4060.
  • Handle: RePEc:eee:phsmap:v:391:y:2012:i:15:p:4050-4060
    DOI: 10.1016/j.physa.2012.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437112002579
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2012.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Duanbing & Fu, Yan & Shang, Mingsheng, 2009. "A fast and efficient heuristic algorithm for detecting community structures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(13), pages 2741-2749.
    2. Pan, Ying & Li, De-Hua & Liu, Jian-Guo & Liang, Jing-Zhang, 2010. "Detecting community structure in complex networks via node similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2849-2857.
    3. Liu, Jian & Liu, Tingzhan, 2010. "Detecting community structure in complex networks using simulated annealing with k-means algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2300-2309.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    2. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    3. Shen, Yi, 2014. "The similarity of weights on edges and discovering of community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 560-570.
    4. Sun, Yixiang & Du, Haifeng & Gong, Maoguo & Ma, Lijia & Wang, Shanfeng, 2014. "Fast computing global structural balance in signed networks based on memetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 261-272.
    5. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    6. Ebrahimi, Morteza & Shahmoradi, Mohammad Reza & Heshmati, Zainabolhoda & Salehi, Mostafa, 2018. "A novel method for overlapping community detection using Multi-objective optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 825-835.
    7. Lin Yu & Xiaodan Guo & Dongdong Zhou & Jie Zhang, 2024. "A Multi-Objective Pigeon-Inspired Optimization Algorithm for Community Detection in Complex Networks," Mathematics, MDPI, vol. 12(10), pages 1-20, May.
    8. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    9. Manuel Guerrero & Consolación Gil & Francisco G. Montoya & Alfredo Alcayde & Raúl Baños, 2020. "Multi-Objective Evolutionary Algorithms to Find Community Structures in Large Networks," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    10. Xiao, Jing & Zhang, Yong-Jian & Xu, Xiao-Ke, 2018. "Convergence improvement of differential evolution for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 762-779.
    11. Wenxin Zhu & Huan Li & Wenhong Wei, 2023. "A Two-Stage Multi-Objective Evolutionary Algorithm for Community Detection in Complex Networks," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    12. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
    13. Zou, Feng & Chen, Debao & Huang, De-Shuang & Lu, Renquan & Wang, Xude, 2019. "Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 662-674.
    14. Shang, Ronghua & Liu, Huan & Jiao, Licheng, 2017. "Multi-objective clustering technique based on k-nodes update policy and similarity matrix for mining communities in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1-24.
    15. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    16. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    17. Li, Jun-fang & Zhang, Bu-han & Liu, Yi-fang & Wang, Kui & Wu, Xiao-shan, 2012. "Spatial evolution character of multi-objective evolutionary algorithm based on self-organized criticality theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5490-5499.
    18. Lu Wei & Na Liu & Junhua Chen & Jihong Sun, 2022. "Topic Evolution of Chinese COVID-19 Policies Based on Co-Occurrence Clustering Network Analysis," Sustainability, MDPI, vol. 14(4), pages 1-21, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Hong-liang & Ch’ng, Eugene & Yong, Xi & Garibaldi, Jonathan M. & See, Simon & Chen, Duan-bing, 2018. "A fast community detection method in bipartite networks by distance dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 108-120.
    2. Chen, Ling-Jiao & Zhang, Zi-Ke & Liu, Jin-Hu & Gao, Jian & Zhou, Tao, 2017. "A vertex similarity index for better personalized recommendation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 607-615.
    3. Xiang, Ju & Hu, Tao & Zhang, Yan & Hu, Ke & Li, Jian-Ming & Xu, Xiao-Ke & Liu, Cui-Cui & Chen, Shi, 2016. "Local modularity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 451-459.
    4. Dabaghi Zarandi, Fataneh & Kuchaki Rafsanjani, Marjan, 2018. "Community detection in complex networks using structural similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 882-891.
    5. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    6. Yang, Kai & Guo, Qiang & Liu, Jian-Guo, 2018. "Community detection via measuring the strength between nodes for dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 256-264.
    7. Liu, Xu & Forrest, Jeffrey Yi-Lin & Luo, Qiang & Yi, Dong-Yun, 2012. "Detecting community structure using biased random merging," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1797-1810.
    8. Wu, Tao & Chen, Leiting & Zhong, Linfeng & Xian, Xingping, 2017. "Predicting the evolution of complex networks via similarity dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 662-672.
    9. Zhou, Kuang & Martin, Arnaud & Pan, Quan, 2015. "A similarity-based community detection method with multiple prototype representation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 519-531.
    10. Laassem, Brahim & Idarrou, Ali & Boujlaleb, Loubna & Iggane, M’bark, 2022. "Label propagation algorithm for community detection based on Coulomb’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    11. Gao, Jian & Zhou, Tao, 2017. "Evaluating user reputation in online rating systems via an iterative group-based ranking method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 546-560.
    12. Zhao, Zi-Juan & Guo, Qiang & Yu, Kai & Liu, Jian-Guo, 2020. "Identifying influential nodes for the networks with community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    13. Ai, Jun & Cai, Yifang & Su, Zhan & Zhang, Kuan & Peng, Dunlu & Chen, Qingkui, 2022. "Predicting user-item links in recommender systems based on similarity-network resource allocation," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    14. Zhu, Junfang & Ren, Xuezao & Ma, Peijie & Gao, Kun & Wang, Bing-Hong & Zhou, Tao, 2022. "Detecting network communities via greedy expanding based on local superiority index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    15. Shang, Jiaxing & Liu, Lianchen & Li, Xin & Xie, Feng & Wu, Cheng, 2016. "Targeted revision: A learning-based approach for incremental community detection in dynamic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 70-85.
    16. Angelito Calma & José Martí-Parreño & Martin Davies, 2019. "Journal of the Academy of Marketing Science 1973–2018: an analytical retrospective," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(2), pages 879-908, May.
    17. Shang, Ronghua & Bai, Jing & Jiao, Licheng & Jin, Chao, 2013. "Community detection based on modularity and an improved genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(5), pages 1215-1231.
    18. Chae, Bongsug (Kevin), 2019. "A General framework for studying the evolution of the digital innovation ecosystem: The case of big data," International Journal of Information Management, Elsevier, vol. 45(C), pages 83-94.
    19. Wang, Wenjun & Liu, Dong & Liu, Xiao & Pan, Lin, 2013. "Fuzzy overlapping community detection based on local random walk and multidimensional scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6578-6586.
    20. Chen, Duanbing & Shang, Mingsheng & Lv, Zehua & Fu, Yan, 2010. "Detecting overlapping communities of weighted networks via a local algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(19), pages 4177-4187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:391:y:2012:i:15:p:4050-4060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.