IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2702-d1171156.html
   My bibliography  Save this article

A Two-Stage Multi-Objective Evolutionary Algorithm for Community Detection in Complex Networks

Author

Listed:
  • Wenxin Zhu

    (School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, China)

  • Huan Li

    (School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, China)

  • Wenhong Wei

    (School of Computer Science and Technology, Dongguan University of Technology, Dongguan 523808, China)

Abstract

Community detection is a crucial research direction in the analysis of complex networks and has been shown to be an NP-hard problem (a problem that is at least as hard as the hardest problems in nondeterministic polynomial time). Multi-objective evolutionary algorithms (MOEAs) have demonstrated promising performance in community detection. Given that distinct crossover operators are suitable for various stages of algorithm evolution, we propose a two-stage algorithm that uses an individual similarity parameter to divide the algorithm into two stages. We employ appropriate crossover operators for each stage to achieve optimal performance. Additionally, a repair operation is applied to boundary-independent nodes during the second phase of the algorithm, resulting in improved community partitioning results. We assessed the effectiveness of the algorithm by measuring its performance on a synthetic network and four real-world network datasets. Compared to four existing competing methods, our algorithm achieves better accuracy and stability.

Suggested Citation

  • Wenxin Zhu & Huan Li & Wenhong Wei, 2023. "A Two-Stage Multi-Objective Evolutionary Algorithm for Community Detection in Complex Networks," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2702-:d:1171156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2702/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2702/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gong, Maoguo & Ma, Lijia & Zhang, Qingfu & Jiao, Licheng, 2012. "Community detection in networks by using multiobjective evolutionary algorithm with decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4050-4060.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    3. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    4. Ebrahimi, Morteza & Shahmoradi, Mohammad Reza & Heshmati, Zainabolhoda & Salehi, Mostafa, 2018. "A novel method for overlapping community detection using Multi-objective optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 825-835.
    5. Manuel Guerrero & Consolación Gil & Francisco G. Montoya & Alfredo Alcayde & Raúl Baños, 2020. "Multi-Objective Evolutionary Algorithms to Find Community Structures in Large Networks," Mathematics, MDPI, vol. 8(11), pages 1-18, November.
    6. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
    7. Zou, Feng & Chen, Debao & Huang, De-Shuang & Lu, Renquan & Wang, Xude, 2019. "Inverse modelling-based multi-objective evolutionary algorithm with decomposition for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 662-674.
    8. Lu Wei & Na Liu & Junhua Chen & Jihong Sun, 2022. "Topic Evolution of Chinese COVID-19 Policies Based on Co-Occurrence Clustering Network Analysis," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    9. Moradi, Mehdi & Parsa, Saeed, 2019. "An evolutionary method for community detection using a novel local search strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 457-475.
    10. Xiao, Jing & Zhang, Yong-Jian & Xu, Xiao-Ke, 2018. "Convergence improvement of differential evolution for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 762-779.
    11. Shang, Ronghua & Liu, Huan & Jiao, Licheng, 2017. "Multi-objective clustering technique based on k-nodes update policy and similarity matrix for mining communities in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 1-24.
    12. Li, Jun-fang & Zhang, Bu-han & Liu, Yi-fang & Wang, Kui & Wu, Xiao-shan, 2012. "Spatial evolution character of multi-objective evolutionary algorithm based on self-organized criticality theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5490-5499.
    13. Sun, Yixiang & Du, Haifeng & Gong, Maoguo & Ma, Lijia & Wang, Shanfeng, 2014. "Fast computing global structural balance in signed networks based on memetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 261-272.
    14. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    15. Fu, Yu-Hsiang & Huang, Chung-Yuan & Sun, Chuen-Tsai, 2016. "Using a two-phase evolutionary framework to select multiple network spreaders based on community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 840-853.
    16. Shen, Yi, 2014. "The similarity of weights on edges and discovering of community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 560-570.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2702-:d:1171156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.