IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp130-150.html
   My bibliography  Save this article

Application of natural computation inspired method in community detection

Author

Listed:
  • Zhang, Weitong
  • Zhang, Rui
  • Shang, Ronghua
  • Li, Juanfei
  • Jiao, Licheng

Abstract

The study of community structure in complex networks has always been a subject of great concern in various fields. Community structure can reflect the dynamic characteristics and functions of complex networks. In recent years, there has been numerous methods proposed for community detection. Natural computing methods are inspired by nature Which have the ability of self-adaptation, self-organization and self-learning. This kind of methods can solve the complex problem that traditional calculation method cannot solve. With the effective network partition evaluation function proposed, the community detection problem can also be regarded as a kind of optimization problem. Therefore, natural computing methods are widely applied in community detection. This paper summarizes the application of natural computing inspired method in community detection, and briefly introduces its basic framework and development course.

Suggested Citation

  • Zhang, Weitong & Zhang, Rui & Shang, Ronghua & Li, Juanfei & Jiao, Licheng, 2019. "Application of natural computation inspired method in community detection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 130-150.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:130-150
    DOI: 10.1016/j.physa.2018.09.186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118313165
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    2. Di Jin & Dayou Liu & Bo Yang & Jie Liu & Dongxiao He, 2011. "Ant Colony Optimization With A New Random Walk Model For Community Detection In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 795-815.
    3. Peter J. M. van Laarhoven & Emile H. L. Aarts & Jan Karel Lenstra, 1992. "Job Shop Scheduling by Simulated Annealing," Operations Research, INFORMS, vol. 40(1), pages 113-125, February.
    4. Shen, Huawei & Cheng, Xueqi & Cai, Kai & Hu, Mao-Bin, 2009. "Detect overlapping and hierarchical community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1706-1712.
    5. You, Tao & Cheng, Hui-Min & Ning, Yi-Zi & Shia, Ben-Chang & Zhang, Zhong-Yuan, 2016. "Community detection in complex networks using density-based clustering algorithm and manifold learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 464(C), pages 221-230.
    6. Ning, Xuemei & Liu, Zhaoqi & Zhang, Shihua, 2016. "Local community extraction in directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 258-265.
    7. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    8. Saoud, Bilal & Moussaoui, Abdelouahab, 2018. "Node similarity and modularity for finding communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 1958-1966.
    9. Zhou, Xu & Liu, Yanheng & Wang, Jian & Li, Chun, 2017. "A density based link clustering algorithm for overlapping community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 65-78.
    10. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    11. Zhang, Jingrui & Lin, Shuang & Liu, Houde & Chen, Yalin & Zhu, Mingcheng & Xu, Yinliang, 2017. "A small-population based parallel differential evolution algorithm for short-term hydrothermal scheduling problem considering power flow constraints," Energy, Elsevier, vol. 123(C), pages 538-554.
    12. Yuan, Xinpeng & Wang, Fang & Xue, Yakui & Liu, Maoxing, 2018. "Global stability of an SIR model with differential infectivity on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 443-456.
    13. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    14. Jianbin Huang & Heli Sun & Yaguang Liu & Qinbao Song & Tim Weninger, 2011. "Towards Online Multiresolution Community Detection in Large-Scale Networks," PLOS ONE, Public Library of Science, vol. 6(8), pages 1-11, August.
    15. Fu, Chaoqi & Wang, Ying & Gao, Yangjun & Wang, Xiaoyang, 2017. "Complex networks repair strategies: Dynamic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 401-406.
    16. Yong-Yeol Ahn & James P. Bagrow & Sune Lehmann, 2010. "Link communities reveal multiscale complexity in networks," Nature, Nature, vol. 466(7307), pages 761-764, August.
    17. Zhang, Jingrui & Tang, Qinghui & Chen, Yalin & Lin, Shuang, 2016. "A hybrid particle swarm optimization with small population size to solve the optimal short-term hydro-thermal unit commitment problem," Energy, Elsevier, vol. 109(C), pages 765-780.
    18. Xiang, Ju & Hu, Tao & Zhang, Yan & Hu, Ke & Li, Jian-Ming & Xu, Xiao-Ke & Liu, Cui-Cui & Chen, Shi, 2016. "Local modularity for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 451-459.
    19. Wang, Tao & Yin, Liyan & Wang, Xiaoxia, 2018. "A community detection method based on local similarity and degree clustering information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1344-1354.
    20. L. Ingber, 1989. "Very fast simulated re-annealing," Lester Ingber Papers 89vf, Lester Ingber.
    21. Ji, Junzhong & Song, Xiangjing & Liu, Chunnian & Zhang, Xiuzhen, 2013. "Ant colony clustering with fitness perception and pheromone diffusion for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3260-3272.
    22. Bagler, Ganesh, 2008. "Analysis of the airport network of India as a complex weighted network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2972-2980.
    23. Jebabli, Malek & Cherifi, Hocine & Cherifi, Chantal & Hamouda, Atef, 2018. "Community detection algorithm evaluation with ground-truth data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 651-706.
    24. Chuan Shi & Zhenyu Yan & Yi Wang & Yanan Cai & Bin Wu, 2010. "A Genetic Algorithm For Detecting Communities In Large-Scale Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 13(01), pages 3-17.
    25. Li, Zhangtao & Liu, Jing, 2016. "A multi-agent genetic algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 336-347.
    26. Liu, Jian & Liu, Tingzhan, 2010. "Detecting community structure in complex networks using simulated annealing with k-means algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2300-2309.
    27. Dongxiao He & Jie Liu & Bo Yang & Yuxiao Huang & Dayou Liu & Di Jin, 2012. "An Ant-Based Algorithm With Local Optimization For Community Detection In Large-Scale Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(08), pages 1-26.
    28. Pu, Cun-Lai & Cui, Wei, 2015. "Vulnerability of complex networks under path-based attacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 622-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kong, Hanzhang & Kang, Qinma & Li, Wenquan & Liu, Chao & Kang, Yunfan & He, Hong, 2019. "A hybrid iterated carousel greedy algorithm for community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Xu & Liu, Yanheng & Zhang, Jindong & Liu, Tuming & Zhang, Di, 2015. "An ant colony based algorithm for overlapping community detection in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 289-301.
    2. Ke Hu & Ju Xiang & Yun-Xia Yu & Liang Tang & Qin Xiang & Jian-Ming Li & Yong-Hong Tang & Yong-Jun Chen & Yan Zhang, 2020. "Significance-based multi-scale method for network community detection and its application in disease-gene prediction," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-24, March.
    3. Dhuha Abdulhadi Abduljabbar & Siti Zaiton Mohd Hashim & Roselina Sallehuddin, 2020. "Nature-inspired optimization algorithms for community detection in complex networks: a review and future trends," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 74(2), pages 225-252, June.
    4. Jianjun Cheng & Xing Su & Haijuan Yang & Longjie Li & Jingming Zhang & Shiyan Zhao & Xiaoyun Chen, 2019. "Neighbor Similarity Based Agglomerative Method for Community Detection in Networks," Complexity, Hindawi, vol. 2019, pages 1-16, May.
    5. Hesamipour, Sajjad & Balafar, Mohammad Ali, 2019. "A new method for detecting communities and their centers using the Adamic/Adar Index and game theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Gui, Chun & Zhang, Ruisheng & Hu, Rongjing & Huang, Guoming & Wei, Jiaxuan, 2018. "Overlapping communities detection based on spectral analysis of line graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 498(C), pages 50-65.
    7. Zhu, Junfang & Ren, Xuezao & Ma, Peijie & Gao, Kun & Wang, Bing-Hong & Zhou, Tao, 2022. "Detecting network communities via greedy expanding based on local superiority index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    8. Wu, Zhihao & Lin, Youfang & Wan, Huaiyu & Tian, Shengfeng & Hu, Keyun, 2012. "Efficient overlapping community detection in huge real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2475-2490.
    9. Shang, Ronghua & Luo, Shuang & Zhang, Weitong & Stolkin, Rustam & Jiao, Licheng, 2016. "A multiobjective evolutionary algorithm to find community structures based on affinity propagation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 203-227.
    10. Badie, Reza & Aleahmad, Abolfazl & Asadpour, Masoud & Rahgozar, Maseud, 2013. "An efficient agent-based algorithm for overlapping community detection using nodes’ closeness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5231-5247.
    11. Jiang, Zhongzhou & Liu, Jing & Wang, Shuai, 2016. "Traveling salesman problems with PageRank Distance on complex networks reveal community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 293-302.
    12. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    13. B Suman & P Kumar, 2006. "A survey of simulated annealing as a tool for single and multiobjective optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1143-1160, October.
    14. Gholami, Maryam & Sheikhahmadi, Amir & Khamforoosh, Keyhan & Jalili, Mahdi, 2022. "Overlapping community detection in networks based on Neutrosophic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    15. de Andrade, Lúcio Pereira & Espíndola, Rogério Pinto & Pereira, Gilberto Carvalho & Ebecken, Nelson Francisco Favilla, 2016. "Fuzzy modeling of plankton networks," Ecological Modelling, Elsevier, vol. 337(C), pages 149-155.
    16. Nedioui, Med Abdelhamid & Moussaoui, Abdelouahab & Saoud, Bilal & Babahenini, Mohamed Chaouki, 2020. "Detecting communities in social networks based on cliques," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    17. Jiao, Qing-Ju & Huang, Yan & Shen, Hong-Bin, 2015. "Community mining with new node similarity by incorporating both global and local topological knowledge in a constrained random walk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 363-371.
    18. Yang, Jin-Xuan & Zhang, Xiao-Dong, 2017. "Finding overlapping communities using seed set," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 96-106.
    19. Mu, Caihong & Liu, Yong & Liu, Yi & Wu, Jianshe & Jiao, Licheng, 2014. "Two-stage algorithm using influence coefficient for detecting the hierarchical, non-overlapping and overlapping community structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 47-61.
    20. Leila M Naeni & Hugh Craig & Regina Berretta & Pablo Moscato, 2016. "A Novel Clustering Methodology Based on Modularity Optimisation for Detecting Authorship Affinities in Shakespearean Era Plays," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:130-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.