IDEAS home Printed from https://ideas.repec.org/a/hin/jnddns/1236846.html

Analyzing the Impact of Trucks on Traffic Flow Based on an Improved Cellular Automaton Model

Author

Listed:
  • Dewen Kong
  • Xiucheng Guo
  • Bo Yang
  • Dingxin Wu

Abstract

This paper aims to analyze the impact of trucks on traffic flow and propose an improved cellular automaton model, which considers both the performance difference between passenger cars and trucks and the behaviour change of passenger cars under the impact of trucks. A questionnaire survey has been conducted to find out whether the impact of trucks exists and how the behaviour of passenger car drivers changes under the impact of trucks. The survey results confirm that the impact of trucks exists and indicate that passenger car drivers will enlarge the space gap, decelerate, and change lanes in advance when they are affected. Simulation results show that traffic volume is still affected by percentages of trucks in the congestion phase in the proposed model compared with traditional heterogeneous cellular automaton models. Traffic volume and speed decrease with the impact of trucks in the congestion phase. The impact of trucks can increase traffic congestion as it increases. However, it has different influences on the speed variance of passenger cars in different occupancies. In the proposed model, the relative relationship of the space gap between car-following-truck and car-following-car is changeable at a certain value of occupancy, which is related to the impact of trucks.

Suggested Citation

  • Dewen Kong & Xiucheng Guo & Bo Yang & Dingxin Wu, 2016. "Analyzing the Impact of Trucks on Traffic Flow Based on an Improved Cellular Automaton Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-14, September.
  • Handle: RePEc:hin:jnddns:1236846
    DOI: 10.1155/2016/1236846
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/DDNS/2016/1236846.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/DDNS/2016/1236846.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2016/1236846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cremer, M. & Ludwig, J., 1986. "A fast simulation model for traffic flow on the basis of boolean operations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(4), pages 297-303.
    2. Partha Chakroborty & Akhilesh Kumar Maurya, 2008. "Microscopic Analysis of Cellular Automata Based Traffic Flow Models and an Improved Model," Transport Reviews, Taylor & Francis Journals, vol. 28(6), pages 717-734, February.
    3. Tian, Junfang & Treiber, Martin & Ma, Shoufeng & Jia, Bin & Zhang, Wenyi, 2015. "Microscopic driving theory with oscillatory congested states: Model and empirical verification," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 138-157.
    4. Bin Jia & Rui Jiang & Zi-You Gao & Xiao-Mei Zhao, 2005. "The Effect Of Mixed Vehicles On Traffic Flow In Two Lane Cellular Automata Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 16(10), pages 1617-1627.
    5. Peeta, Srinivas & Zhang, Pengcheng & Zhou, Weimin, 2005. "Behavior-based analysis of freeway car-truck interactions and related mitigation strategies," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 417-451, June.
    6. Bin Jia & Xin-Gang Li & Rui Jiang & Zi-You Gao, 2010. "Traffic Behavior Around The Weaving Section In Cellular Automata Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 409-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    2. Yang, Kaidi & Roca-Riu, Mireia & Menéndez, Mónica, 2019. "An auction-based approach for prebooked urban logistics facilities," Omega, Elsevier, vol. 89(C), pages 193-211.
    3. Junyan Han & Xiaoyuan Wang & Huili Shi & Bin Wang & Gang Wang & Longfei Chen & Quanzheng Wang, 2022. "Research on the Impacts of Vehicle Type on Car-Following Behavior, Fuel Consumption and Exhaust Emission in the V2X Environment," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    4. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    5. Yang, Zhiwei & Liu, Han & Chen, Xiaohong & Zhou, Jun & Yuan, Quan, 2025. "Discovering the origins of freight demand: An empirical investigation of spatial heterogeneity in the generation of heavy-duty truck trips," Transport Policy, Elsevier, vol. 164(C), pages 60-79.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Yunxia & Li, Le & Jiang, Chenming & Jiang, Yangsheng & Yao, Zhihong, 2025. "The impact of selfish driving behavior of autonomous vehicles on mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 672(C).
    2. Tianjun Feng & Keyi Liu & Chunyan Liang, 2023. "An Improved Cellular Automata Traffic Flow Model Considering Driving Styles," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    3. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    4. Kong, Dewen & Sun, Lishan & Li, Jia & Xu, Yan, 2021. "Modeling cars and trucks in the heterogeneous traffic based on car–truck combination effect using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    5. Tian, Junfang & Zhang, H.M. & Treiber, Martin & Jiang, Rui & Gao, Zi-You & Jia, Bin, 2019. "On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 334-350.
    6. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    7. Tomoko Sakiyama & Ikuo Arizono, 2019. "Reversible Transitions in a Cellular Automata-Based Traffic Model with Driver Memory," Complexity, Hindawi, vol. 2019, pages 1-8, December.
    8. Sun, Jianpeng & Zhang, Jing & Yuan, Zijian & Tian, Junfang & Wang, Tao, 2025. "A stochastic car-following model in the framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 675(C).
    9. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    10. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    11. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    12. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    13. Maosheng Li & Jing Fan & Jaeyoung Lee, 2023. "Modeling Car-Following Behavior with Different Acceptable Safety Levels," Sustainability, MDPI, vol. 15(7), pages 1-23, April.
    14. Fu, Ding-Jun & Zhang, Cun-Bao & Liu, Jun & Li, Tao & Li, Qi-Lang, 2024. "Research of the left-turn vehicles lane-changing behaviors at signalized intersections with contraflow lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    15. Ziwen Song & Feng Sun & Rongji Zhang & Yingcui Du & Guiliang Zhou, 2021. "An Improved Cellular Automaton Traffic Model Based on STCA Model Considering Variable Direction Lanes in I-VICS," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    16. Бекларян Л.А.* & Хачатрян Н.К.**, 2019. "Динамические Модели Организации Грузопотока На Железнодорожном Транспорте," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 55(3), pages 62-73, июль.
    17. Chen, Yanyan & Chen, Ning & Wang, Yang & Wang, Zhenbao & Feng, Guochen, 2015. "Modeling pedestrian behaviors under attracting incidents using cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 287-300.
    18. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    19. Junyan Han & Xiaoyuan Wang & Gang Wang, 2022. "Modeling the Car-Following Behavior with Consideration of Driver, Vehicle, and Environment Factors: A Historical Review," Sustainability, MDPI, vol. 14(13), pages 1-27, July.
    20. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnddns:1236846. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.