IDEAS home Printed from https://ideas.repec.org/a/scn/cememm/v55y2019i3p62-73.html
   My bibliography  Save this article

Динамические Модели Организации Грузопотока На Железнодорожном Транспорте

Author

Listed:
  • Бекларян Л.А.*
  • Хачатрян Н.К.**

Abstract

*ЦЭМИ РАН, Москва **Национальный исследовательский университет "Высшая школа экономики", Москва *E-mail: beklar@cemi.rssi.ru **E-mail: nerses-khachatryan@yandex.ru Работа частично поддержана Российским фондом фундаментальных исследований (проекты № 19-01-00147 и 19-010-00958) Аннотация. Статья посвящена математическому моделированию процесса организации железнодорожных грузоперевозок на транспортной сети с большим числом промежуточных станций и расположенных между ними перегонов для временного хранения части грузов. Исследуется модель, прогнозирующая динамику загруженности станций и потоков, возникающих в транспортной сети, при заданной процедуре движения грузопотока, использующей две технологии, единые для всех станций. Первая технология основана на нормативных правилах взаимодействия соседних станций. Согласно ей интенсивность приема и отправки грузов на произвольной станции должна зависеть от загруженности соседних станций. Вторая технология зависит от технических возможностей станций и основана на взаимодействии станции с соседними перегонами. Неотъемлемой частью процесса организации грузоперевозок является система контроля. В данной модели применяется простая система контроля, при которой объемы грузов на соседних станциях должны совпадать с лагом времени, единым для всех станций. Такая модель описывается системой дифференциальных уравнений, удовлетворяющей нелокальным линейным ограничениям. Для этой модели исследуются режимы грузоперевозок, удовлетворяющие заданной системе контроля. Режимы описываются решениями типа бегущей волны и двумя типами их расширений. Один тип расширения зависит от корректировки технологий грузоперевозок и допускает разрывные решения, второй тип - от ослабления системы контроля и допускает выполнимость нелокальных линейных ограничений с заданной погрешностью. Стационарные режимы грузоперевозок исследуются на устойчивость.

Suggested Citation

  • Бекларян Л.А.* & Хачатрян Н.К.**, 2019. "Динамические Модели Организации Грузопотока На Железнодорожном Транспорте," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 55(3), pages 62-73, июль.
  • Handle: RePEc:scn:cememm:v:55:y:2019:i:3:p:62-73
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Cremer, M. & Ludwig, J., 1986. "A fast simulation model for traffic flow on the basis of boolean operations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(4), pages 297-303.
    2. T. Leventhal & G. Nemhauser & L. Trotter, 1973. "A Column Generation Algorithm for Optimal Traffic Assignment," Transportation Science, INFORMS, vol. 7(2), pages 168-176, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minh Sang Pham Do & Ketoma Vix Kemanji & Man Dinh Vinh Nguyen & Tuan Anh Vu & Gerrit Meixner, 2023. "The Action Point Angle of Sight: A Traffic Generation Method for Driving Simulation, as a Small Step to Safe, Sustainable and Smart Cities," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    2. Xu, Zhandong & Xie, Jun & Liu, Xiaobo & Nie, Yu (Marco), 2020. "Hyperpath-based algorithms for the transit equilibrium assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    3. Nie, Yu (Marco), 2010. "A class of bush-based algorithms for the traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 73-89, January.
    4. Jang, Wonjae & Ran, Bin & Choi, Keechoo, 2005. "A discrete time dynamic flow model and a formulation and solution method for dynamic route choice," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 593-620, August.
    5. Wang, Dong & Liao, Feixiong, 2023. "Incentivized user-based relocation strategies for moderating supply–demand dynamics in one-way car-sharing services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    6. Andrea Raith & Judith Wang & Matthias Ehrgott & Stuart Mitchell, 2014. "Solving multi-objective traffic assignment," Annals of Operations Research, Springer, vol. 222(1), pages 483-516, November.
    7. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    8. D E Boyce, 1984. "Urban Transportation Network-Equilibrium and Design Models: Recent Achievements and Future Prospects," Environment and Planning A, , vol. 16(11), pages 1445-1474, November.
    9. Wang, Dong & Liao, Feixiong & Gao, Ziyou & Rasouli, Soora & Huang, Hai-Jun, 2020. "Tolerance-based column generation for boundedly rational dynamic activity-travel assignment in large-scale networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    10. Sun, Lu & Jafaripournimchahi, Ammar & Hu, Wusheng, 2020. "A forward-looking anticipative viscous high-order continuum model considering two leading vehicles for traffic flow through wireless V2X communication in autonomous and connected vehicle environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    11. Tianjun Feng & Keyi Liu & Chunyan Liang, 2023. "An Improved Cellular Automata Traffic Flow Model Considering Driving Styles," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    12. Yu (Marco) Nie, 2012. "A Note on Bar-Gera's Algorithm for the Origin-Based Traffic Assignment Problem," Transportation Science, INFORMS, vol. 46(1), pages 27-38, February.
    13. Perederieieva, Olga & Raith, Andrea & Schmidt, Marie, 2018. "Non-additive shortest path in the context of traffic assignment," European Journal of Operational Research, Elsevier, vol. 268(1), pages 325-338.
    14. Jahn, Olaf & Möhring, Rolf & Schulz, Andreas & Stier Moses, Nicolás, 2004. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Working papers 4394-02, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    15. Liu, Peng & Liao, Feixiong & Tian, Qiong & Huang, Hai-Jun & Timmermans, Harry, 2020. "Day-to-day needs-based activity-travel dynamics and equilibria in multi-state supernetworks," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 208-227.
    16. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    17. Yang, Da & Qiu, Xiaoping & Yu, Dan & Sun, Ruoxiao & Pu, Yun, 2015. "A cellular automata model for car–truck heterogeneous traffic flow considering the car–truck following combination effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 62-72.
    18. Wang, Aihu & Tang, Yuanhua & Mohmand, Yasir Tariq & Xu, Pei, 2022. "Modifying link capacity to avoid Braess Paradox considering elastic demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    19. Jing, Dian & Yao, Enjian & Chen, Rongsheng, 2023. "Moving characteristics analysis of mixed traffic flow of CAVs and HVs around accident zones," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    20. Olaf Jahn & Rolf H. Möhring & Andreas S. Schulz & Nicolás E. Stier-Moses, 2005. "System-Optimal Routing of Traffic Flows with User Constraints in Networks with Congestion," Operations Research, INFORMS, vol. 53(4), pages 600-616, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:scn:cememm:v:55:y:2019:i:3:p:62-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sergei Parinov (email available below). General contact details of provider: http://www.cemi.rssi.ru/emm/home.htm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.