IDEAS home Printed from https://ideas.repec.org/a/hin/complx/8525397.html
   My bibliography  Save this article

Frequency Regulation and Coordinated Control for Complex Wind Power Systems

Author

Listed:
  • Cheng Guo
  • Delin Wang

Abstract

With the development of complex renewable energy systems, the frequency control and regulation of the power grid powered by such renewable energies (e.g., wind turbine) are more critical, since the adopted different power generators can lead to frequency variations. To address the frequency regulation of such power grids, we will present a variable coefficient coordinated primary frequency regulation scheme for synchronous generator (SG) and doubly fed induction generator (DFIG). The variable adjustment coefficient of DFIG is defined according to the current reserve capacity, which can be applied to adjust different operation conditions to regulate the frequency variation within a predefined allowable range. Since the DFIG can make full use of the reserve wind power in the system frequency regulation, the proposed method can address both the frequency regulation response and the economic performance. Simulation results indicate that the proposed coordinated control scheme can achieve satisfactory frequency regulation response and lead to reduced demand for frequency regulation of SG.

Suggested Citation

  • Cheng Guo & Delin Wang, 2019. "Frequency Regulation and Coordinated Control for Complex Wind Power Systems," Complexity, Hindawi, vol. 2019, pages 1-12, May.
  • Handle: RePEc:hin:complx:8525397
    DOI: 10.1155/2019/8525397
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2019/8525397.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2019/8525397.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2019/8525397?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Qin Guo & Zhongkui Sun & Ying Zhang & Wei Xu, 2019. "Time-Delayed Feedback Control in the Multiple Attractors Wind-Induced Vibration Energy Harvesting System," Complexity, Hindawi, vol. 2019, pages 1-11, January.
    2. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    3. Jesús Enrique Sierra & Matilde Santos, 2019. "Wind and Payload Disturbance Rejection Control Based on Adaptive Neural Estimators: Application on Quadrotors," Complexity, Hindawi, vol. 2019, pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinuo Huang & Licheng Wang & Kai Wang, 2019. "Investigation of Var Compensation Schemes in Unbalanced Distribution Systems," Complexity, Hindawi, vol. 2019, pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    2. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    3. Copena, Damián & Simón, Xavier, 2018. "Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 38-47.
    4. Kumar, Yogesh & Ringenberg, Jordan & Depuru, Soma Shekara & Devabhaktuni, Vijay K. & Lee, Jin Woo & Nikolaidis, Efstratios & Andersen, Brett & Afjeh, Abdollah, 2016. "Wind energy: Trends and enabling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 209-224.
    5. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    6. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    7. Yang, Jin & Chen, Bin, 2016. "Energy–water nexus of wind power generation systems," Applied Energy, Elsevier, vol. 169(C), pages 1-13.
    8. Romanic, Djordje & Parvu, Dan & Refan, Maryam & Hangan, Horia, 2018. "Wind and tornado climatologies and wind resource modelling for a modern development situated in “Tornado Alley”," Renewable Energy, Elsevier, vol. 115(C), pages 97-112.
    9. Zengguang Liu & Guolai Yang & Liejiang Wei & Daling Yue & Yanhua Tao, 2018. "Research on the Robustness of the Constant Speed Control of Hydraulic Energy Storage Generation," Energies, MDPI, vol. 11(5), pages 1-14, May.
    10. Siriyothai, Patcharakon & Kittichaikarn, Chawalit, 2023. "Performance enhancement of a galloping-based energy harvester with different groove depths on square bluff body," Renewable Energy, Elsevier, vol. 210(C), pages 148-158.
    11. Joshua Sunday Riti & Deyong Song & Yang Shu & Miriam Kamah & Agya Adi Atabani, 2018. "Does renewable energy ensure environmental quality in favour of economic growth? Empirical evidence from China’s renewable development," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(5), pages 2007-2030, September.
    12. Phillips, Jason, 2015. "A quantitative-based evaluation of the environmental impact and sustainability of a proposed onshore wind farm in the United Kingdom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1261-1270.
    13. José Carlos Araújo Amarante & Cássio da Nóbrega Besarria & Helson Gomes de Souza & Otoniel Rodrigues dos Anjos Junior, 2021. "The relationship between economic growth, renewable and nonrenewable energy use and CO2 emissions: empirical evidences for Brazil," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 411-431, June.
    14. Chaisri Tarasawatpipat & Thammarak Srimarut & Witthaya Mekhum, 2020. "Seeing Domestic and Industrial Logistic in Context of CO2 Emission: Role of Container Port Traffic, Railway Transport, and Air Transport Intensity in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 570-576.
    15. McGranahan, Devan Allen & Kirkman, Kevin Peter, 2021. "Be proactive on energy sprawl: South Africa must anticipate surface impacts of fracking in rural areas," Resources Policy, Elsevier, vol. 72(C).
    16. Zhishun Wei & Tharishinny Raja Mogan & Kunlei Wang & Marcin Janczarek & Ewa Kowalska, 2021. "Morphology-Governed Performance of Multi-Dimensional Photocatalysts for Hydrogen Generation," Energies, MDPI, vol. 14(21), pages 1-37, November.
    17. Morteza Aien & Omid Mahdavi, 2020. "On the Way of Policy Making to Reduce the Reliance of Fossil Fuels: Case Study of Iran," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    18. Milad Ghaisi & Milad Rahmani & Pedram Gharghabi & Ali Zoghi & Seyed Hossein Hosseinian, 2017. "Scheduling a Wind Hydro-Pumped-Storage Unit Considering the Economical Optimization," Post-Print hal-01478231, HAL.
    19. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    20. Mirasgedis, S. & Tourkolias, C. & Tzovla, E. & Diakoulaki, D., 2014. "Valuing the visual impact of wind farms: An application in South Evia, Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 296-311.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:8525397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.