IDEAS home Printed from https://ideas.repec.org/a/hin/complx/5857372.html
   My bibliography  Save this article

Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling

Author

Listed:
  • Xiaoyang Liu
  • Chao Liu
  • Xiaoping Zeng

Abstract

Emergency public event arises everyday on social network. The information propagation of emergency public event (favorable and harmful) is researched. The dynamics of a susceptible-infected-susceptible and susceptible-infected-removed epidemic models incorporated with information propagation of emergency public event are studied. In particular, we investigate the propagation model and the infection spreading pattern using nonlinear dynamic method and results obtained through extensive numerical simulations. We further generalize the model for any arbitrary number of infective network nodes to mimic existing scenarios in online social network. The simulation results reveal that the inclusion of multiple infective node achieved stability and equilibrium in the proposed information propagation model.

Suggested Citation

  • Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
  • Handle: RePEc:hin:complx:5857372
    DOI: 10.1155/2017/5857372
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2017/5857372.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2017/5857372.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5857372?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wanduku, Divine, 2017. "Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 49-76.
    2. Feng, Yun & Ding, Li & Huang, Yun-Han & Zhang, Li, 2016. "Epidemic spreading on weighted networks with adaptive topology based on infective information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 493-502.
    3. Wang, Lingna & Sun, Mengfeng & Chen, Shanshan & Fu, Xinchu, 2016. "Epidemic spreading on one-way-coupled networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 280-288.
    4. Zhu, Guanghu & Chen, Guanrong & Fu, Xinchu, 2017. "Effects of active links on epidemic transmission over social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 614-621.
    5. Wu, Qingchu & Chen, Shufang & Zha, Lingling, 2017. "Epidemic spreading over quenched networks with local behavioral response," Chaos, Solitons & Fractals, Elsevier, vol. 96(C), pages 17-22.
    6. Lee, Harry F. & Fei, Jie & Chan, Christopher Y.S. & Pei, Qing & Jia, Xin & Yue, Ricci P.H., 2017. "Climate change and epidemics in Chinese history: A multi-scalar analysis," Social Science & Medicine, Elsevier, vol. 174(C), pages 53-63.
    7. Zhang, Tianrui & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2017. "Dynamic malware containment under an epidemic model with alert," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 249-260.
    8. Wu, Qingchu & Zhang, Fei, 2016. "Threshold conditions for SIS epidemic models on edge-weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 77-83.
    9. Greenhalgh, D. & Liang, Y. & Mao, X., 2016. "Modelling the effect of telegraph noise in the SIRS epidemic model using Markovian switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 684-704.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peng, Hao & Peng, Wangxin & Zhao, Dandan & Wang, Wei, 2020. "Impact of the heterogeneity of adoption thresholds on behavior spreading in complex networks," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    2. Xuzhen Zhu & Jinming Ma & Xin Su & Hui Tian & Wei Wang & Shimin Cai, 2019. "Information Spreading on Weighted Multiplex Social Network," Complexity, Hindawi, vol. 2019, pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yunhan Huang & Quanyan Zhu, 2022. "Game-Theoretic Frameworks for Epidemic Spreading and Human Decision-Making: A Review," Dynamic Games and Applications, Springer, vol. 12(1), pages 7-48, March.
    2. Zhu, Yu-Xiao & Cao, Yan-Yan & Chen, Ting & Qiu, Xiao-Yan & Wang, Wei & Hou, Rui, 2018. "Crossover phenomena in growth pattern of social contagions with restricted contact," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 408-414.
    3. Xu, Jiang & Chen, Tao & Wen, Xiangdan, 2021. "Analysis of a Bailey–Dietz model for vector-borne disease under regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    4. Noel Rapa, 2021. "Mitigation measures, prevalence response and public mobility during the COVID-19 emergency," CBM Working Papers WP/03/2021, Central Bank of Malta.
    5. Mendolia, Silvia & Stavrunova, Olena & Yerokhin, Oleg, 2021. "Determinants of the community mobility during the COVID-19 epidemic: The role of government regulations and information," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 199-231.
    6. Jose Diamantino Hernández Guillén & Ángel Martín del Rey & Roberto Casado Vara, 2020. "On the Optimal Control of a Malware Propagation Model," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    7. Guo, Wenjuan & Zhang, Qimin, 2021. "Explicit numerical approximation for an impulsive stochastic age-structured HIV infection model with Markovian switching," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 86-115.
    8. Liu, Lijun & Wei, Xiaodan & Zhang, Naimin, 2019. "Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 587-599.
    9. Wei, Xiaodan & Xu, Gaochao & Zhou, Wenshu, 2018. "Global stability of endemic equilibrium for a SIQRS epidemic model on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 203-214.
    10. Jing, Wenjun & Li, Yi & Zhang, Xiaoqin & Zhang, Juping & Jin, Zhen, 2022. "A rumor spreading pairwise model on weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    11. Wu, Qingchu & Zhou, Rong & Hadzibeganovic, Tarik, 2019. "Conditional quenched mean-field approach for recurrent-state epidemic dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 71-79.
    12. Xue Yang & Zhiliang Zhu & Hai Yu & Yuli Zhao & Li Guo, 2019. "Evolutionary Game Dynamics of the Competitive Information Propagation on Social Networks," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    13. Liu, Xiongding & Li, Tao & Xu, Hao & Liu, Wenjin, 2019. "Spreading dynamics of an online social information model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 497-510.
    14. Xu, Jinghong & Du, Zhitao & Guo, Jianchao & Fu, Xiangling & Zhang, Yuqiang & Wu, Ye, 2018. "Empirical and modeling studies of WeChat information dissemination," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1113-1120.
    15. Wei, Wei & Xu, Wei & Song, Yi & Liu, Jiankang, 2021. "Bifurcation and basin stability of an SIR epidemic model with limited medical resources and switching noise," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Caroline Orset, 2018. "People’s perception and cost-effectiveness of home confinement during an influenza pandemic: evidence from the French case," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(9), pages 1335-1350, December.
    17. Pan, Cheng & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2018. "An effective rumor-containing strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 80-91.
    18. Piqueira, José Roberto C. & Cabrera, Manuel A.M. & Batistela, Cristiane M., 2021. "Malware propagation in clustered computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    19. Liu, Liya & Jiang, Daqing & Hayat, Tasawar, 2021. "Dynamics of an SIR epidemic model with varying population sizes and regime switching in a two patch setting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    20. Lin Hu & Lin-Fei Nie, 2022. "Dynamics of a Stochastic HIV Infection Model with Logistic Growth and CTLs Immune Response under Regime Switching," Mathematics, MDPI, vol. 10(19), pages 1-20, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:5857372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.