IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i9p1518-d409449.html
   My bibliography  Save this article

On the Optimal Control of a Malware Propagation Model

Author

Listed:
  • Jose Diamantino Hernández Guillén

    (Department of Applied Mathematics, University of Salamanca, 37008 Salamanca, Spain)

  • Ángel Martín del Rey

    (Department of Applied Mathematics, Institute of Fundamental Physics and Mathematics, University of Salamanca, 37008 Salamanca, Spain)

  • Roberto Casado Vara

    (BISITE Research Group, University of Salamanca, 37008 Salamanca, Spain)

Abstract

An important way considered to control malware epidemic processes is to take into account security measures that are associated to the systems of ordinary differential equations that governs the dynamics of such systems. We can observe two types of control measures: the analysis of the basic reproductive number and the study of control measure functions. The first one is taken at the beginning of the epidemic process and, therefore, we can consider this to be a prevention measure. The second one is taken during the epidemic process. In this work, we use the theory of optimal control that is associated to systems of ordinary equations in order to find a new function to control malware epidemic through time. Specifically, this approach is evaluate on a particular compartmental malware model that considers carrier devices.

Suggested Citation

  • Jose Diamantino Hernández Guillén & Ángel Martín del Rey & Roberto Casado Vara, 2020. "On the Optimal Control of a Malware Propagation Model," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1518-:d:409449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/9/1518/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/9/1518/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pang, Liuyong & Ruan, Shigui & Liu, Sanhong & Zhao, Zhong & Zhang, Xinan, 2015. "Transmission dynamics and optimal control of measles epidemics," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 131-147.
    2. Zhang, Chunming & Huang, Haitao, 2016. "Optimal control strategy for a novel computer virus propagation model on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 251-265.
    3. Zhang, Tianrui & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2017. "Dynamic malware containment under an epidemic model with alert," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 249-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guiyun Liu & Jieyong Chen & Zhongwei Liang & Zhimin Peng & Junqiang Li, 2021. "Dynamical Analysis and Optimal Control for a SEIR Model Based on Virus Mutation in WSNs," Mathematics, MDPI, vol. 9(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    2. Fu, Xinjie & Wang, JinRong, 2022. "Dynamic stability and optimal control of SISqIqRS epidemic network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    3. Yi, Yinxue & Zhang, Zufan & Gan, Chenquan, 2018. "The effect of social tie on information diffusion in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 783-794.
    4. Abdelaziz, Mahmoud A.M. & Ismail, Ahmad Izani & Abdullah, Farah A. & Mohd, Mohd Hafiz, 2020. "Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Ali Khaleel Dhaiban & Baydaa Khalaf Jabbar, 2021. "An optimal control model of COVID-19 pandemic: a comparative study of five countries," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 790-809, December.
    6. Berhe, Hailay Weldegiorgis & Makinde, Oluwole Daniel & Theuri, David Mwangi, 2019. "Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 903-921.
    7. Zizhen Zhang & Soumen Kundu & Ruibin Wei, 2019. "A Delayed Epidemic Model for Propagation of Malicious Codes in Wireless Sensor Network," Mathematics, MDPI, vol. 7(5), pages 1-18, May.
    8. Linhe Zhu & Hongyong Zhao, 2017. "Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2064-2078, July.
    9. Pang, Liuyong & Zhao, Zhong & Song, Xinyu, 2016. "Cost-effectiveness analysis of optimal strategy for tumor treatment," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 293-301.
    10. Pan, Cheng & Yang, Lu-Xing & Yang, Xiaofan & Wu, Yingbo & Tang, Yuan Yan, 2018. "An effective rumor-containing strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 80-91.
    11. Piqueira, José Roberto C. & Cabrera, Manuel A.M. & Batistela, Cristiane M., 2021. "Malware propagation in clustered computer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    12. Chen, Shanshan & Jiang, Haijun & Li, Liang & Li, Jiarong, 2020. "Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    13. Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
    14. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    15. Li, Can & Guo, Zun-Guang & Zhang, Zhi-Yu, 2017. "Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 161-172.
    16. Juliet Nakakawa & Joseph Y. T. Mugisha & Michael W. Shaw & William Tinzaara & Eldad Karamura, 2017. "Banana Xanthomonas Wilt Infection: The Role of Debudding and Roguing as Control Options within a Mixed Cultivar Plantation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-13, December.
    17. Xiangqing Zhao, 2023. "Optimal Control Strategy for SLBRS with Two Control Inputs," Mathematics, MDPI, vol. 11(19), pages 1-10, September.
    18. Kar, T.K. & Nandi, Swapan Kumar & Jana, Soovoojeet & Mandal, Manotosh, 2019. "Stability and bifurcation analysis of an epidemic model with the effect of media," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 188-199.
    19. Zhang, Xulong & Gan, Chenquan, 2018. "Global attractivity and optimal dynamic countermeasure of a virus propagation model in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1004-1018.
    20. Xiangqing Zhao & Wanmei Hou, 2023. "Optimal Control of SLBRS with Recovery Rates," Mathematics, MDPI, vol. 12(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:9:p:1518-:d:409449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.