IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v347y2019icp903-921.html
   My bibliography  Save this article

Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis

Author

Listed:
  • Berhe, Hailay Weldegiorgis
  • Makinde, Oluwole Daniel
  • Theuri, David Mwangi

Abstract

In this paper we propose a co-dynamics deterministic system for measles and dysentery diarrhea diseases in a single host population. Using center manifold theory, we show that the co-dynamics model may exhibit a backward bifurcation for some parameter values. Numerical simulations of the system show that the two diseases always coexist if R0 > 1. The system is extended to include time-dependent control-variables: vaccination, treatment and sanitation of the environment, to minimize the number of infected humans and the cost of implementation of the controls. The Pontryagin Maximum Principle was employed to find the necessary conditions for the existence of the optimal controls. The numerical simulations show that the effective controls could reduce the diseases in the community. The incremental cost-effectiveness ratio was used to quantify the cost-effectiveness analysis. It is found that the control strategy which implements vaccination, treatment of dysentery diarrhea and sanitation of the environment is the most cost-effective.

Suggested Citation

  • Berhe, Hailay Weldegiorgis & Makinde, Oluwole Daniel & Theuri, David Mwangi, 2019. "Co-dynamics of measles and dysentery diarrhea diseases with optimal control and cost-effectiveness analysis," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 903-921.
  • Handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:903-921
    DOI: 10.1016/j.amc.2018.11.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300318310233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2018.11.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pang, Liuyong & Ruan, Shigui & Liu, Sanhong & Zhao, Zhong & Zhang, Xinan, 2015. "Transmission dynamics and optimal control of measles epidemics," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 131-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berhe, Hailay Weldegiorgis, 2020. "Optimal Control Strategies and Cost-effectiveness Analysis Applied to Real Data of Cholera Outbreak in Ethiopia’s Oromia Region," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Das, Dhiraj Kumar & Kar, T.K., 2021. "Global dynamics of a tuberculosis model with sensitivity of the smear microscopy," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    3. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelaziz, Mahmoud A.M. & Ismail, Ahmad Izani & Abdullah, Farah A. & Mohd, Mohd Hafiz, 2020. "Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    2. Ali Khaleel Dhaiban & Baydaa Khalaf Jabbar, 2021. "An optimal control model of COVID-19 pandemic: a comparative study of five countries," OPSEARCH, Springer;Operational Research Society of India, vol. 58(4), pages 790-809, December.
    3. Jose Diamantino Hernández Guillén & Ángel Martín del Rey & Roberto Casado Vara, 2020. "On the Optimal Control of a Malware Propagation Model," Mathematics, MDPI, vol. 8(9), pages 1-16, September.
    4. Qureshi, Sania & Jan, Rashid, 2021. "Modeling of measles epidemic with optimized fractional order under Caputo differential operator," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    5. Li, Can & Guo, Zun-Guang & Zhang, Zhi-Yu, 2017. "Transmission dynamics of a brucellosis model: Basic reproduction number and global analysis," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 161-172.
    6. Nudee, K. & Chinviriyasit, S. & Chinviriyasit, W., 2019. "The effect of backward bifurcation in controlling measles transmission by vaccination," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 400-412.
    7. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    8. Fu, Xinjie & Wang, JinRong, 2022. "Dynamic stability and optimal control of SISqIqRS epidemic network," Chaos, Solitons & Fractals, Elsevier, vol. 163(C).
    9. Pang, Liuyong & Zhao, Zhong & Song, Xinyu, 2016. "Cost-effectiveness analysis of optimal strategy for tumor treatment," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 293-301.
    10. Juliet Nakakawa & Joseph Y. T. Mugisha & Michael W. Shaw & William Tinzaara & Eldad Karamura, 2017. "Banana Xanthomonas Wilt Infection: The Role of Debudding and Roguing as Control Options within a Mixed Cultivar Plantation," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2017, pages 1-13, December.
    11. Madhu, Kalyanasundaram & Al-arydah, Mo’tassem, 2021. "Optimal vaccine for human papillomavirus and age-difference between partners," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 185(C), pages 325-346.
    12. Xu, Rui & Wang, Zhili & Zhang, Fengqin, 2015. "Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 332-342.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:347:y:2019:i:c:p:903-921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.