IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v153y2021ip2s0960077921008560.html
   My bibliography  Save this article

Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate

Author

Listed:
  • Cheng, Xinxin
  • Wang, Yi
  • Huang, Gang

Abstract

The risk of propagation of infectious diseases such as avian influenza and COVID-19 is generally controlled or reduced by quarantine measures. Considering this situation, a network-based SIQS (susceptible-infected-quarantined-susceptible) infectious disease model with nonmonotone incidence rate is established and analyzed in this paper. The psychological impact of the transmission of certain diseases in heterogeneous networks at high levels of infection may be characterized by the related nonmonotone incidence rate. The expressions of the basic reproduction number and equilibria of the model are determined analytically. We demonstrate in detail the uniform persistence of system and the global asymptotic stability of the disease-free equilibrium. The global attractivity of the unique endemic equilibrium is discussed by using monotone iteration technique. We obtain that the endemic equilibrium is globally asymptotically stable under certain conditions by constructing appropriate Lyapunov function. In addition, numerical simulations are performed to indicate the theoretical results.

Suggested Citation

  • Cheng, Xinxin & Wang, Yi & Huang, Gang, 2021. "Global dynamics of a network-based SIQS epidemic model with nonmonotone incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
  • Handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008560
    DOI: 10.1016/j.chaos.2021.111502
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077921008560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111502?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Lijun & Wei, Xiaodan & Zhang, Naimin, 2019. "Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 587-599.
    2. Zhu, Guanghu & Chen, Guanrong & Fu, Xinchu, 2017. "Effects of active links on epidemic transmission over social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 614-621.
    3. Wei, Xiaodan & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability and attractivity of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 789-798.
    4. Li, Chun-Hsien, 2015. "Dynamics of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 234-243.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    2. Liya Wang & Yaxun Dai & Renzhuo Wang & Yuwen Sun & Chunying Zhang & Zhiwei Yang & Yuqing Sun, 2022. "SEIARN: Intelligent Early Warning Model of Epidemic Spread Based on LSTM Trajectory Prediction," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    3. Leishi Wang & Mingtao Li & Xin Pei & Juan Zhang, 2022. "Optimal Breeding Strategy for Livestock with a Dynamic Price," Mathematics, MDPI, vol. 10(10), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Lijun & Wei, Xiaodan & Zhang, Naimin, 2019. "Global stability of a network-based SIRS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 587-599.
    2. Wei, Xiaodan & Zhao, Xu & Zhou, Wenshu, 2022. "Global stability of a network-based SIS epidemic model with a saturated treatment function," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    3. Wei, Xiaodan & Xu, Gaochao & Zhou, Wenshu, 2018. "Global stability of endemic equilibrium for a SIQRS epidemic model on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 203-214.
    4. Xue Yang & Zhiliang Zhu & Hai Yu & Yuli Zhao & Li Guo, 2019. "Evolutionary Game Dynamics of the Competitive Information Propagation on Social Networks," Complexity, Hindawi, vol. 2019, pages 1-11, December.
    5. Leyi Zheng & Longkun Tang, 2019. "A Node-Based SIRS Epidemic Model with Infective Media on Complex Networks," Complexity, Hindawi, vol. 2019, pages 1-14, February.
    6. Huang, Yunhan & Ding, Li & Feng, Yun, 2016. "A novel epidemic spreading model with decreasing infection rate based on infection times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 1041-1048.
    7. Noel Rapa, 2021. "Mitigation measures, prevalence response and public mobility during the COVID-19 emergency," CBM Working Papers WP/03/2021, Central Bank of Malta.
    8. Linhe Zhu & Hongyong Zhao, 2017. "Dynamical behaviours and control measures of rumour-spreading model with consideration of network topology," International Journal of Systems Science, Taylor & Francis Journals, vol. 48(10), pages 2064-2078, July.
    9. Caroline Orset, 2018. "People’s perception and cost-effectiveness of home confinement during an influenza pandemic: evidence from the French case," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 19(9), pages 1335-1350, December.
    10. Xiaoyang Liu & Chao Liu & Xiaoping Zeng, 2017. "Online Social Network Emergency Public Event Information Propagation and Nonlinear Mathematical Modeling," Complexity, Hindawi, vol. 2017, pages 1-7, June.
    11. Mendolia, Silvia & Stavrunova, Olena & Yerokhin, Oleg, 2021. "Determinants of the community mobility during the COVID-19 epidemic: The role of government regulations and information," Journal of Economic Behavior & Organization, Elsevier, vol. 184(C), pages 199-231.
    12. Zhang, Yuexia & Pan, Dawei, 2021. "Layered SIRS model of information spread in complex networks," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    13. Fu, Minglei & Feng, Jun & Lande, Dmytro & Dmytrenko, Oleh & Manko, Dmytro & Prakapovich, Ryhor, 2021. "Dynamic model with super spreaders and lurker users for preferential information propagation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    14. Fu, Minglei & Yang, Hongbo & Feng, Jun & Guo, Wen & Le, Zichun & Lande, Dmytro & Manko, Dmytro, 2018. "Preferential information dynamics model for online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 993-1005.
    15. Lan, Guijie & Song, Baojun & Yuan, Sanling, 2023. "Epidemic threshold and ergodicity of an SEIR model with vertical transmission under the telegraph noise," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Ezzeddine Belgacem Mosbah & Parakramaweera Sunil Dharmapala, 2022. "Evaluating the Effects of COVID-19 and Vaccination on Employment Behaviour: A Panel Data Analysis Acrossthe World," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    17. Wei, Xiaodan & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability and attractivity of a network-based SIS epidemic model with nonmonotone incidence rate," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 789-798.
    18. Huang, Shouying, 2018. "Global dynamics of a network-based WSIS model for mobile malware propagation over complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 293-303.
    19. Wei, Xiaodan & Xu, Gaochao & Liu, Lijun & Zhou, Wenshu, 2017. "Global stability of endemic equilibrium of an epidemic model with birth and death on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 78-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:153:y:2021:i:p2:s0960077921008560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.